6. Find all of the values of b so that the specified
7. Graph each of the function: $y=\frac{x^{3}+x^{2}-6 x}{x^{2}-3 x+2}$
8. Sketch the graph of a rational function that has

- a root of multiplicity 2 at $\mathrm{x}=2$,
- a root of multiplicity 1 at $x=-3$,
- a vertical asymptote with mult. 1 at $x=-1$
- a vertical asymptote with mult. 2 at $x=4$
- a missing point at $(5,1)$

3. For the function $y=f(x)$, find the values

a. $\lim _{x \rightarrow-4} f(x)$
b. $f(-4)$
c. $\lim _{x \rightarrow-1^{-}} f(x)$ d. $\lim _{x \rightarrow-1^{+}} f(x)$
e. $\lim _{x \rightarrow-1} f(x)$
f. $f(-1)$
g. $\lim _{x \rightarrow 0} f(x)$ h. $\lim _{x \rightarrow 2^{-}} f(x)$
i. $\lim _{x \rightarrow 2^{+}} f(x) \quad$ j. $\lim _{x \rightarrow 2} f(x) \quad$ k. $f(2)$
4. Tell where $f(x)$ is discontinuous, and why. m . Tell the intervals of continuity for $f(x)$
5. For this function:
$f(x)=\left\{\begin{array}{cc}x+2 & x<-1 \\ x^{2}-1 & -1 \leq x<2 \\ 3 & 2<x\end{array}\right.$
a. Sketch the graph
b. Find the left and right and normal limits at $\mathrm{x}=-1$ and 2
c. If it is not continuous at $x=-1$ and/or 2, tell why it is not continuous
6. Use the squeeze theorem to find the limit of $\lim _{x \rightarrow 0}\left(x^{2}\left(\sin \left(\frac{2}{x}\right)-1\right)\right)$. Justify your answer.
function is continuous:
a. $y=\left\{\begin{array}{cc}4-x^{2} & x<2 \\ x+b & x \geq 2\end{array}\right.$
b. $y=\left\{\begin{array}{cc}b^{2} x^{2}-3 x+3 & x<1 \\ b x+2 & x \geq 1\end{array}\right.$
7. Find the derivative $f^{\prime}(a)$ for each of these functions by using the limit definition/formula for the derivative.
a. $f(x)=3 x^{2}-x+1$
b. $y=\frac{2}{x-3}$
c. $f(x)=3 \sqrt{x-2}$
8. Use your results from \#7 to help you find the equation of the tangent line:
a. to $f(x)=3 x^{2}-x+1$ when $\mathrm{x}=2$
b. to $y=\frac{2}{x-3}$ when $\mathrm{x}=-1$
c. to $f(x)=3 \sqrt{x-2}$ when $\mathrm{x}=3$
9. Ellen made 3 errors in using limits to find the derivative of $y=x^{2}-x$ (one error is repeated multiple times). Find and fix her errors:

$$
\begin{aligned}
& \left(x, x^{2}-x\right) \quad\left(x+h,(x+h)^{2}-x+h\right) \\
& m=\frac{(x+h)^{2}-x+h-\left(x^{2}-x\right)}{x+h-x} \\
& \lim _{h \rightarrow 0} \frac{x^{2}+h^{2}-x+h-x^{2}+x}{h}=\frac{h^{2}+h}{h} \\
& =\frac{h(h+1)}{h}=\lim _{h \rightarrow 0} h+1=1
\end{aligned}
$$

