A SSS proof (the one that isn't Euclid's)

Let $\triangle ABC$ and $\triangle DEF$ be triangles such that

- (1) $AB \cong DE$
- (2) $\overline{BC} \cong \overline{EF}$
- (3) $\overline{AC} \cong \overline{DF}$

By Axiom 4, construct a triangle $\Delta A' EF$ such that

- (4) A' lies on the opposite side of EF from D.
- (5) $\angle ABC \cong \angle A'EF$
- (6) $\overline{AB} \cong \overline{A'E}$

and hence,

(7) $\Delta ABC \cong \Delta A' EF$

Since the triangles are congruent, we also know that:

(8) $\overline{AC} \cong \overline{A'F}$

which, together with line 3: $AC \cong DF$ implies that

(9) $A'F \cong DF$ (common notion, transitivity)

Likewise, transitivity together with lines 6 and 1: $\overline{AB} \cong \overline{A'E}$, $\overline{AB} \cong \overline{DE}$ give us that

- (10) $\overline{A'E} \cong \overline{DE}$
- We now consider 3 cases:

Thus in all cases, we conclude $\triangle ABC \cong \overline{\triangle DEF \ QED}$.