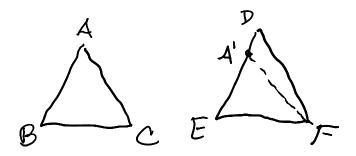
ASA



Let $\triangle ABC$ and $\triangle DEF$ be triangles such that $\angle ABC \cong \angle DEF$ $\overline{BC} \cong \overline{EF}$ $\angle BCA \cong \angle EFD$ (1)

By Axiom 2 (or 4), there is a point A' on \overrightarrow{ED} such that $\overrightarrow{AB} \cong \overrightarrow{A'E}$ By SAS $\triangle ABC \cong \triangle A'EF$ S: $\overrightarrow{AB} \cong \overrightarrow{A'E}$ A: $\angle ABC \cong \angle DEF = \angle A'EF$

S:
$$BC \cong EF$$

So $\angle ACB \cong \angle A'FE$ (2)

Thus, using transitivity with lines (1) and (2) we get $\angle EFA' \cong \angle EFD$ Since angles $\angle EFA'$ and $\angle EFD$ share a side, are congruent, and are measured in the same direction, the other side is also shared: $\overrightarrow{FA'} = \overrightarrow{FD}$

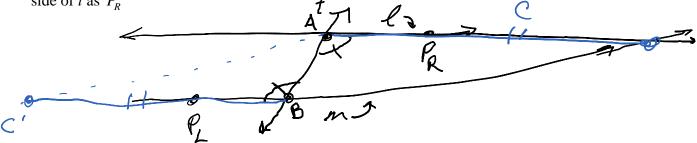
We know that both A' and D lie on \overrightarrow{ED} and both A' and D lie on $\overrightarrow{FA'} = \overrightarrow{FD}$ By theorem 1 (lines intersect in at most one point), A' and D must be the same point. Hence $\triangle ABC \cong \triangle DEF$ QED Parallel lines exist

Let *l* and *m* be lines, and let *t* be a line that intersects *l* and *m* in points *A* and *B* respectively such that $\angle ABP_L \cong \angle BAP_R$ where P_L and P_R lie on *m* and *l* respectively, and P_L and P_R lie on opposite sides of *t*.

Either *l* and *m* intersect or they are parallel.

Suppose (case 1) that *l* and *m* intersect.

Without loss in generality, we may assume that their point of intersection C lies on the same side of t as P_R



Now, by theorem 1, there exists a point C' on m such that $\overline{AC} \cong \overline{BC'}$ By SAS $\triangle BAC \cong \triangle ABC'$

> S: $\overline{AB} \cong \overline{BA}$ A: $\angle ABP_L \cong \angle BAP_R$ S: $\overline{AC} \cong \overline{BC'}$

Hence $\angle ABC \cong \angle BAC'$

Thus $\angle BAC' + \angle BAC \cong \angle ABC + ABC' = 180^{\circ}$ and so *C*', *A*, and *C* must all lie on a straight line (by the straight line axiom?) and the line through *A* and *C* is *l*, so $C' \in l$. So we have that $C \in l \cap m$ and $C' \in l \cap m$, but *C* and *C*' can't be the same point because they lie on opposite sides of *t*, so this contradicts theorem 1.

Thus we must conclude that *l* and *m* do not intersect, and hence that they are parallel.