1. Calculate the reflection of each of these points when inverted in the unit circle $x^{2}+y^{2}=1$

$$
\begin{aligned}
& \text { a. }(3,1) \rightarrow\langle 3,1\rangle \\
& \begin{array}{ll}
\langle 3,1\rangle \\
|\langle 3,1\rangle|=\mid \sqrt{3^{2}+1^{2}}=\sqrt{10} \\
\ddots & (-2,3)
\end{array} \\
& (-2,3) \quad|\langle-2,3\rangle|=\sqrt{4+9} \\
& \frac{\langle-2,3\rangle}{|\langle-2,3\rangle|^{2}}=\left\langle-\frac{2}{13}, \frac{3}{13}\right\rangle \\
& \left(-\frac{2}{13}, \frac{3}{13}\right)
\end{aligned}
$$

2. Calculate the reflection of each of these points when inverted in the circle given:
a. $(1,2)$ in the circle $x^{2}+y^{2}=9$
$\langle 1,2\rangle$

$$
\langle 1,2\rangle \cdot \frac{3^{2}}{\sqrt{5} 1^{2}}=\left\langle\frac{9}{5}, \frac{18}{5}\right\rangle
$$

b. $(1,2)$ in the circle $(x-5)^{2}+y^{2}=4=8^{2}$

$$
\langle-4,2\rangle \cdot \frac{2^{2}}{\sqrt{20}^{2}}=\langle-4,2\rangle \frac{4}{20}
$$

$$
=\langle-4,2\rangle \frac{1}{5}=\left\langle-\frac{4}{5}, \frac{2}{5}\right\rangle
$$

$\langle 5,0\rangle+\left\langle-\frac{.8}{-4}, \frac{2}{5}, \frac{2}{5}\right\rangle=\langle 4.2, .4\rangle$
3. Explain what transformation you get by doing two reflections across parallel reflection lines. If the transformation is a translation, describe how the translation vector is related to the parallel lines. If the transformation is a rotation, describe how the rotation point and angle are related to the reflection lines.
translation a vector
perpendicular

lines, and twice as long as the distance between the
lines. (from frost ref treen the ${ }^{\text {rat }}$)
4. Explain what transformation you'get by doing two reflections across intersection reflection lines. If the transformation is a translation, describe how the translation vector is related to the parallel lines. If the transformation is a rotation, describe how the rotation point and angle are related to the reflection lines.
A rotation around the intersection of the two reflection lines.
by an angle that is $2 x$ the angle between the reflection lines,

If you pick a point, A, on the first reflection line (call the intersection point B), and $C \in$ second line such that
5. Describe how we measure angles between intersecting circles (for instance, hyperbolic lines that are half-circle shaped).
 measure the angle between the tangent
lines to the cirles at the Point of
intersection
6. If you invert/reflect a circle across another circle, what shapes) is the reflection?

A circle unless the circle goes through
he center of the inversion circle, and then you get
7. Explain how the SAS theorem can be proved using the Application axiom. You can use the in class outline from Oct 11 (Look in Zoom in Canvas). You need to replace the arrows with sentences (because
\qquad
\qquad
\qquad , therefore \qquad
Given $\triangle A B C, \triangle D E F$
such that $\overline{A B} \cong \overline{D E}$

and $\overline{A C} \cong D E$
and $\angle B A C \cong E D F$
By Application There is a congruence transformation such that
A maps to
B maps to

C maps to C^{\prime} then is on the same side of $\overrightarrow{D E}$ as F
Because $\overline{A B} \cong \overline{D E}, A^{\prime}=D, B^{\prime} \in \overrightarrow{D E}$

$$
\text { so } B^{\prime}=E
$$

Because $\overline{A^{\prime} B^{\prime}}=\overline{D E}$ and $\angle A B C \cong \angle E D F$

$$
\left(\angle A^{\prime} B^{\prime} C^{\prime} \cong \angle E D F\right)
$$

and C^{\prime} and, F are on the same side of $\overrightarrow{D E}$, so $C^{\prime} \in \overrightarrow{D F}$
Because $\overline{A C} \cong \overline{D f}\left(\overline{A^{\prime} C^{\prime}} \cong \overline{D f}\right)$ an $C^{\prime} \in \overrightarrow{D F}\left(\right.$ and $\left.A^{\prime}=D\right)$

$$
\text { so } C^{\prime}=f
$$

So my congruence transformation maps $A \rightarrow D$

$$
\begin{aligned}
& B \rightarrow E \\
& C \rightarrow F
\end{aligned}
$$

8. Explain the ASA theorem can be proved using the Application axiom.

Given $\triangle A B C$ and $\triangle D E F$

such that $\angle B A C \cong \angle E D F$

$$
\begin{aligned}
& \overline{A B} \cong \overline{D E} \\
& \angle A B C \cong \angle D E F
\end{aligned}
$$

By Application, there is a congruence transformation that maps
A to $A^{\prime}=D$
B to $B^{\prime} \in \overrightarrow{D E}$
C to C^{\prime} on the same side of
$\overrightarrow{D E}$ as F

Because $A^{\prime}=D, \overline{A B} \cong \overline{D E} \quad\left(\overline{A^{\prime} B^{\prime}} \cong D E\right)$
and $B^{\prime} \in \overrightarrow{D E}$,
so $B^{\prime}=\bar{t} \leftarrow$

Because $\angle B A C \cong \angle E D F\left(\angle B^{\prime} A^{\prime} C^{\prime} \cong \angle E D F\right)$
and $B^{\prime}=E, \quad A^{\prime}=D$ and
C^{\prime} and F are on the same side of $\stackrel{\rightharpoonup}{D}$
so $C^{\prime} \in \overrightarrow{D F} \quad\left(\angle E D F=\angle E D C^{\prime}\right)$
Because $\angle A B C \cong \angle D E F\left(\angle A^{\prime} B^{\prime} C^{\prime} \cong \angle D E F\right)$
and $B^{\prime}=E, \quad A^{\prime}=D$ and
C^{\prime} and F are on the same side of $\stackrel{D}{D F}$
so $C^{\prime} \in \overrightarrow{E F}\left(D E F=\angle D E C^{\prime}\right) \quad \rho=\triangle D E F$
so $c^{\prime} \in \overrightarrow{D F} \cap \overrightarrow{E F}$, so $c^{\prime}=F \leftarrow$. There fore $\underset{\triangle D E F}{\triangle A B C} \cong$

