Shared Notes, theorems 20, 21, 23

Theorem 20

Given $\overline{A B}, \overline{C D}$ such that $A B=C D$
By $A \times 3$, there exists an isometry f_{1} such that

$$
\begin{aligned}
& f(A)=C \\
& f(B) \in \overrightarrow{C D}
\end{aligned}
$$

Because $A B=C D$
we know that $A B=f(A) S(B)$ and $A B=C f(B)$
$B y$ substitution $C D=C f(B)$
$B y$ detn: $\overrightarrow{C D}=\{\underline{C f(B)}+f(B) D=C D$ or $C D+D f(B)=\underline{C f(B)}$

Case 1
Case 2
$C f(B)+f(B) D=C D$

$$
C A+D f(B)=C f(B)
$$

By Substitution:

$$
\begin{aligned}
& C D+f(B) D=C D \\
& \leq \sigma f(B) D=0
\end{aligned}
$$

By substitution:

$$
C D+D f(B)=C D
$$

$$
=0 D f(B)=0
$$

So By $A \times 1(c), \quad f(B)=D$

Theorem 21:
Given $\overrightarrow{A B}, \overrightarrow{C D}$
By Axiom 3, there exists an isometry
f, such that

$$
F(A)=C
$$

and $f(B) \in \overrightarrow{C D}$
so by definition of line \& ray

$$
f(B) \in \overleftrightarrow{\leftrightarrow D}
$$

and $c \in \overleftrightarrow{C D}$ so $F(A) \in \overleftrightarrow{C D}$
by the $q E=F \overrightarrow{C D}=f(B)$
$B y$ the $18 \mathrm{C} \leftrightarrows(A) F(B)=F(\overrightarrow{A B})$
$50, f(A B)=\overrightarrow{C D}$
$\underset{\overrightarrow{A B} \cong \leftrightarrows}{\text { means (by def) }}$

The 23 Given $\overrightarrow{A B}$ and $C \mathcal{A} \overrightarrow{A B}$ and side 5 (contains C) and side T (doesn't contain C)

By $A \times 3$ there exist an isometry, f St

$$
\begin{aligned}
& f(A)=A \\
& f(B) \varepsilon \overrightarrow{A B} \\
& f(C) \varepsilon T
\end{aligned}
$$

By The $22.5 \quad f(s)=T$
The 225 DON'T NEED TO PROVE
Given lines $\overrightarrow{A B}$ and $\overrightarrow{C D}$ and side S of $\overrightarrow{A B}$ and isometry f such that $f(\overrightarrow{A B})=\overrightarrow{C D}$ then $f(5)$ is a side of ED

