Theorem 29 (SAS): If a triangle has two sides and the included angle congruent to two sides and the included angle of another triangle, then the triangles are congruent

Given triangles $\triangle A B C$ and $\triangle D E F$ such that

- $\overline{A B} \cong \overline{D E}$,
- $\overline{B C} \cong \overline{E F}$ and
- $\angle A B C \cong \angle D E F$

Then

- $\underline{A B}=\underline{D E}$ because (1)
- $\underline{B C}=\underline{E F}$ because (2)
- $m(\angle A B C)=m(\angle D E F)$ because (3)

By Axiom 3, there is an isometry f
such that

- $\quad f(B)=E$
- $f(A) \in \overrightarrow{E D}$
- $\quad f(C)$ is on the same side of $\overrightarrow{E D}$ as point F

By Theorem 26 and lines $(7,4,8,9), f(A)=D$
By Theorem 27 and lines $(7,6,8,9,10), f(C) \in \overrightarrow{E F}$
By Theorem 26 and lines $(7,2,8,12), f(C)=F$
So $f(A)=D, f(B)=E, f(C)=F$ (by lines $11,8,13$), and by theorem 18, $f(\triangle A B C)=\triangle D E F$ Therefore $\triangle A B C \cong \triangle D E F$

