Theorem 29 (SAS): If a triangle has two sides and the included angle congruent to two sides and the included angle of another triangle, then the triangles are congruent

Given triangles $\triangle ABC$ and $\triangle DEF$ such that

•
$$\overline{AB} \cong \overline{DE}$$
, (1)

•
$$\overline{BC} \cong \overline{EF}$$
 and (2)

•
$$\angle ABC \cong \angle DEF$$
 (3)

Then

•
$$\underline{AB} = \underline{DE}$$
 because (1) (4)

•
$$\underline{BC} = \underline{EF}$$
 because (2) (5)

- $m(\angle ABC) = m(\angle DEF)$ because (3) (6)
- By Axiom 3, there is an isometry f (7)

such that

- f(B) = E (8)
- $f(A) \in \overrightarrow{ED}$ (9)
- f(C) is on the same side of \overrightarrow{ED} as point F (10)

By Theorem 26 and lines (7, 4, 8, 9), f(A) = D (11)

By Theorem 27 and lines (7, 6, 8, 9, 10), $f(C) \in \overrightarrow{EF}$ (12)

By Theorem 26 and lines (7, 2, 8, 12), f(C) = F (13)

So f(A) = D, f(B) = E, f(C) = F (by lines 11, 8, 13), and by theorem 18, $f(\Delta ABC) = \Delta DEF$ Therefore $\Delta ABC \cong \Delta DEF$