Theorem 20: Given segments \overline{AB} and \overline{CD} with equal lengths: $\underline{AB} = \underline{CD}$, there exists an isometry $f: E^2 \to E^2$ such that f(A) = C and f(B) = D, and hence $\overline{AB} \cong \overline{CD}$.

Proof:

Given \overline{AB} and \overline{CD} such that $\underline{AB} = \underline{CD}$

By Axiom 3, there is an isometry f such that

- f(A) = C
- $f(B) \in \overrightarrow{CD}$

Because f is an isometry, we know $\underline{AB} = f(A)f(B)$ and so $\underline{AB} = Cf(B)$

By substitution (into $\underline{AB} = \underline{CD}$) we get $\underline{CD} = Cf(B)$

By definition $\overrightarrow{CD} = \{X \mid \underline{CX} + \underline{XD} = \underline{CD} \text{ or } \underline{CD} + \underline{DX} = \underline{CX}\}$

Because $f(B) \in \overrightarrow{CD}$, we know $C f(B) + f(B)D = \underline{CD}$ or $\underline{CD} + \underline{Df(B)} = C f(B)$

This is the question/clarification. If we are going to write CD = then we technically need a variable (like X) in the definition.

It's also OK to compress these two lines into one line and say:

Because $f(B) \in \overline{CD}$, then by definition of \overline{CD} , we know $\underline{Cf(B)} + \underline{f(B)D} = \underline{CD}$ or $\underline{CD} + \underline{Df(B)} = \underline{Cf(B)}$

Case 1: $\underline{C f(B)} + \underline{f(B)D} = \underline{CD}$	Case 2: $\underline{CD} + \underline{Df(B)} = \underline{Cf(B)}$
By substitution (of $\underline{CD} = \underline{Cf(B)}$)	By substitution (of $\underline{CD} = \underline{Cf(B)}$)
$\underline{CD} + \underline{f(B)D} = \underline{CD}$	$\underline{CD} + \underline{Df(B)} = \underline{CD}$
So	So
f(B)D = 0	f(B)D = 0
So by Ax 1c $f(B) = D$	So by Ax 1c $f(B) = D$

Therefore f(B) = D