Theorem 18: For an isometry $f: E^2 \to E^2$ and distinct points A, B and f(A) = A' and f(B) = B'

a) The isometric image of a line segment is a line segment: $f(\overline{AB}) = \overline{A'B'}$

Proof:

Let $f: E^2 \to E^2$ be _____, and let A, B be _____ Now, $f(\overline{AB}) = \{f(X) \mid X \in \}$ And $\overline{A'B'} = \{X \mid ____+___=__\}$ Let $Y \in f(\overline{AB})$ Then Y = f(X) such that _____ So, $AX + \underline{XB} = \underline{AB}$ Because *f* is an isometry, we know that $\underline{AX} = f(A)f(X) = \underline{A'Y}$, and $\underline{XB} = _$ and $\underline{AB} = _$ Substituting in, we get that _____ + ____ = _____ And therefore $\in \overline{A'B'}$ Thus $f(\overline{AB}) \subset \overline{A'B'}$ Let $Y \in \overline{A'B'}$ Then, by definition: $+ = \underline{A'B'}$ Because f is an isometry, it is an onto function, and hence Y = for some point XBecause *f* is an isometry, we know $\underline{A'Y} =$ and $\underline{YB'} =$ and $\underline{A'B'} =$ Substituting in, we get that _____ + ___ = ____ And so $\in \overline{AB}$, and hence $Y \in f(\overline{AB})$. Hence, $\overline{A'B'} \subset f(\overline{AB})$ Therefore $\overline{A'B'} = f(\overline{AB})$

Theorem 19: The isometric image of a circle is a circle, sp	ecifically, for an isometry $f: E^2 \to E^2$ and a circle
$C = \bigcirc(A, r)$ with center A and radius r (where A is a point of A) and radius r (where A) is a point of A .	bint and r is a positive real number), then
$f(C) = \bigcirc (f(A), r) = \bigcirc (A', r)$ where $f(A) = A'$.	
Proof:	
Let	_2
and let	_
Now, $f(C) = $	_
And $\bigcirc(A',r) =$	_
Let $Y \in f(C)$	
Then <i>Y</i> =	
Because f is an isometry, we know that	
Substituting in, we get that	
Thus $f(C) \subseteq \odot(A', r)$	
Let $Y \in \bigcirc (A', r)$	
Then, by definition:	_
Because f is an isometry, it is an onto function, and hence _	
Because f is an isometry, we know	
Substituting in, we get that	

Hence, $\bigcirc(A',r) \subseteq f(C)$

Therefore $f(C) = \bigcirc (A', r)$