Theorem 18: For an isometry $f: E^{2} \rightarrow E^{2}$ and distinct points A, B and $f(A)=A^{\prime}$ and $f(B)=B^{\prime}$
a) The isometric image of a line segment is a line segment: $f(\overline{A B})=\overline{A^{\prime} B^{\prime}}$

Proof:
Let $f: E^{2} \rightarrow E^{2}$ be \qquad , and let A, B be \qquad
Now, $f(\overline{A B})=\{f(X) \mid X \in$ \qquad \}

And $\overline{A^{\prime} B^{\prime}}=\{X \mid$ \qquad $+$ \qquad \}

Let $Y \in f(\overline{A B})$
Then $Y=f(X)$ such that \qquad
So, $\underline{A X}+\underline{X B}=\underline{A B}$
Because f is an isometry, we know that
$\underline{A X}=\underline{f(A) f(X)}=\underline{A^{\prime} Y}$, and $\underline{X B}=$ \qquad and $\underline{A B}=$ \qquad
Substituting in, we get that
\qquad $+$ \qquad $=$ \qquad
And therefore \qquad $\in \overline{A^{\prime} B^{\prime}}$

Thus $f(\overline{A B}) \subseteq \overline{A^{\prime} B^{\prime}}$
Let $Y \in \overline{A^{\prime} B^{\prime}}$
Then, by definition: \qquad $+$ $=\underline{A^{\prime} B^{\prime}}$

Because f is an isometry, it is an onto function, and hence $Y=$ \qquad for some point X

Because f is an isometry, we know
$\underline{A^{\prime} Y}=$ \qquad and $\underline{Y B^{\prime}}=$ \qquad and $\underline{A^{\prime} B^{\prime}}=$ \qquad
Substituting in, we get that
\qquad $+$ \qquad $=$ \qquad
And so $\quad \in \overline{A B}$, and hence $Y \in f(\overline{A B})$.
Hence, $\overline{A^{\prime} B^{\prime}} \subseteq f(\overline{A B})$
Therefore $\overline{A^{\prime} B^{\prime}}=f(\overline{A B})$

Theorem 19: The isometric image of a circle is a circle, specifically, for an isometry $f: E^{2} \rightarrow E^{2}$ and a circle $C=\odot(A, r)$ with center A and radius r (where A is a point and r is a positive real number), then $f(C)=\odot(f(A), r)=\odot\left(A^{\prime}, r\right)$ where $f(A)=A^{\prime}$.

Proof:
Let \qquad
and let \qquad
Now, $f(C)=$ \qquad
And $\odot\left(A^{\prime}, r\right)=$ \qquad
Let $Y \in f(C)$
Then $Y=$ \qquad

Because f is an isometry, we know that

Substituting in, we get that
\qquad
\qquad

Thus $f(C) \subseteq \odot\left(A^{\prime}, r\right)$
Let $Y \in \odot\left(A^{\prime}, r\right)$
Then, by definition: \qquad
Because f is an isometry, it is an onto function, and hence \qquad
Because f is an isometry, we know
Substituting in, we get that
\qquad
\qquad

Hence, $\odot\left(A^{\prime}, r\right) \subseteq f(C)$
Therefore $f(C)=\odot\left(A^{\prime}, r\right)$

