Geometry homework

Fill in the blanks to prove

Theorem 17: The composition of two isometries is an isometry, and hence congruence is transitive: if $S \cong T$ and $T \cong V$ then $S \cong V$

Proof:

Let $f: E^2 \to E^2$ and $g: E^2 \to E^2$ be isometries. Then f and g are both ______, so by theorem 11, $g \circ f$ is ______ Also, because they are isometries, Then *f* and *g* are both ______, so by theorem 12, $g \circ f$ is _____ And, because they are isometries, Then *f* and *g* are both ______, so by theorem 13, $g \circ f$ is _____ Let $A, B \in E^2$ Then d(f(A), f(B)) = ______ because _____ is an isometry. (1)And d(g(f(A)), g(f(B))) = d(,) because g is an isometry. (2)So, d(g(f(A)), g(f(B))) = d(,) = d(,) by lines (2) and (1)Therefore $g \circ f$ is an isometry, and the composition of any two isometries is an isometry.

Let $S \cong T$ and $T \cong V$,

Then there exist isometries $f: E^2 \to E^2$ and $g: E^2 \to E^2$ such that f(S) = T and g(T) = V

Because f and g are isometries, we know ______ is an isometry, and

 $g(f(S)) = g(__) = __$

Thus, $S \cong V$