Compiled photographed class quadrilateral proofs:

Q1:

R3

HS:

Theorem 71) $\mathrm{H3}$: "The adjacent angles in, a rhombus ave supplementary" Given Rhombus with angle measures as labeled then (1) $\angle A \cong \angle D,{ }^{(2)} \angle B \cong \angle C(H 4) \angle C, D$
By Theorem $54(21)$ we know that the measure of all intenor angles In a quadrilateral $=360^{\circ}$
So (3) $\angle A+\angle B+\angle C+\angle D=360^{\circ}$
By substitution $\left(1,2\right.$ in +03) weget $2 \angle A+2 \angle B=360^{\circ(4)}$
$2(\angle A+\angle B)=360^{\circ}$ $\angle A+\angle B=180^{\circ} 5$
By substitution (5into 3) $180^{\circ}+\angle C+\angle D=360^{\circ}$
$\angle C+\angle D=140^{\circ}$ (6)
By substituting (2 into 5) $\angle A+\angle C=180^{\circ}$ (4)
By substituting (7int03) $140^{\circ}+\angle B+\angle D=360^{\circ}$

$$
\angle B+\angle D=180^{\circ} \text { © }
$$

Therefore the adjacent angles ma rhombus are supplementary
$(8,7,6,5)$

H4

RR:
R2 Given rectangle $A B C D$
with angle measures $a ; b, c, d$ labeled as shawn

$$
a=b=c=d=90
$$

Extend $\stackrel{\rightharpoonup}{A B}$ and $\overrightarrow{D C}$ so $\overleftrightarrow{A D}$ is a transversal

$$
a+d=180
$$

So by theorem 44

$$
\overline{A B} \| \overline{D C}
$$

Extend $\stackrel{A D}{\rightleftarrows}$ and $\overleftrightarrow{B C}$ so $\stackrel{\rightharpoonup B}{A}$ is a transversal

$$
a+b=180
$$

So by theorem 44

$$
\overline{A D} \| \overline{B C}
$$

RI

Given quad $A B C D$ with angles as labelled such that $a \neq b=c=d=90^{\circ}$
$B Y R 2, \overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{B C}$
Construct $\overline{B D}$
Consider $\overline{B D}$ to be $E D$, a transversal $\rightarrow B y, A \times 7$ क. $\mathrm{thm} .54, \angle A D B \cong \angle C B D$ and $\angle A B D \cong \angle C D B$
Bythm: 20, $\overline{B D}=\sqrt{B D}$
Consider $\triangle A B D$ and $\triangle C D B$
$B y$ the $20, \overline{B D}=B \bar{D}$
By $A S A, \angle A D B \approx \angle C B D, \overline{B D}=\overline{B D}, \because \angle A B D \cong$ $\angle C D B, S O \triangle A B D=\triangle C D B$
Therefore, $\overline{A D} \approx \overline{\overline{D C}}$ and $\overline{A B} \approx \overline{D C}$

R6 Proof
Given quad $A B C D$ st

$\frac{A B}{A D} \cong \frac{D C}{B C}$ and
$A D \cong B C$
$\angle A D C=90^{\circ}$ nd

$$
n^{\angle} \angle A D C=90^{\circ}
$$

Construct $A \bar{C}$
Consider $\triangle A D C$ and $\triangle C B A$
by Thy $2 O \quad \overline{A C} \cong \overline{A C}$
by SSS $\triangle A D C \cong \triangle C B A$
by CPCTC $\angle A D C \cong \angle C B A$ (1)

$$
\angle D A C \cong \angle B C A
$$

$$
\angle D C A \cong \angle B A C \quad(3)
$$

by $A \times 4 \quad m \angle B A D=n \angle B A C+m \angle D A C$
and $m \angle B C D=m \angle B C A+m \angle D C A$
by The $57 \mathrm{~m} \angle D A C+m \angle A D C+m \angle D C A=180^{\circ}$
and $m \angle B C A+m \angle C B A+m \angle B A C=180^{\circ}$
by subs $m \angle D A C+m \angle D C A+90^{\circ}=180^{\circ}$
as $m \angle B C A+m \angle B A C+90^{\circ}=180^{\circ}$
by Alfobra $\quad M \angle D A C+m \angle P C A=90^{\circ} \quad$ (4)
and $m \angle B C A+m \angle B A C=90^{\circ} \quad$ (5)
by subs $(3$ into 4$) m \angle D A C+m \angle B A C=90^{\circ}$
by subs (3 into 5) $m \angle B C A+m \angle D C A=90^{\circ}$
Thus all angles $=90^{\circ}$
Therefore quad $A B C D$ is a rectangle

