## Quadrilateral conjectures:

Q1. The sum of interior angles of a quadrilateral is $360^{\circ}$
P1. Every parallelogram has opposite congruent sides
P2. Every parallelogram has opposite congruent angles
P3. Every parallelogram has interior angles that add up to $360^{\circ}$
P4. Every parallelogram has exterior angles that add up to $360^{\circ}$
P5. The diagonals of a parallelogram intersect at the midpoint of $\qquad$ (what should go here?)
P6. If a quadrilateral has opposite congruent sides, then it is a parallelogram
P7. If a quadrilateral has opposite congruent angles then it is a parallelogram

R1. Every rectangle has two sets of congruent sides
R2. Every rectangle has two set of parallel sides
R3. Every rectangle has congruent diagonals
R4. The intersection of the two diagonals of a rectangle is the same point as the intersection of
R5. the transversals through the midpoints of the opposite sides of the rectangle
R6. If a quadrilateral has congruent opposite sides, and one $90^{\circ}$ angle, then it is a rectangle
H1. Every rhombus is convex
H2. Every rhombus is a parallelogram
H3. The adjacent angles of a rhombus are supplementary
H4. The opposite angles in a rhombus are congruent
H5. The diagonals of a rhombus are not equal
H6. The diagonals of a rhombus are perpendicular
H7. If a quadrilateral has

- 4 congrtent sides
- 2 pairs of opposite angles that are congruent
- diagonals that are not equal
- diagonals that are perpendicular

Then it is a quadrilateral
K1. Every kite has exactly one pair of congruent angles
K2. Every kite has perpendicular diagonals
K3. In every kite, the intersection of the diagonals is the midpoint of one of the diagonals
K4. If a quadrilateral has one pair of congruent adjacent sides, and a pair of congruent angles, then it is a kite.
K5. Every kite has perpendicular opposite sides
K6. If a quadrilateral has perpendicular diagonals, then it is a kite

