Some other questions I could ask about transformations (each problem may have several right answers)

1. Is this a correct use of Axiom 3?

By Axiom 3, there is an isometry, f, such that $f(J)=G$ and $f(G)=D$

No, you can specify the image of J, but then you have to describe the image of G with a ray.
2. Which (if any) are correct ways to use axiom 3?

By Axiom 3, there is an isometry, f, such that $f(J)=G$
a. $f(G) \in \overrightarrow{J D}$
b. $f(G) \in \overrightarrow{G D}$
c. $f(G) \in \overrightarrow{D G}$

Only bis an allowed use of axiom 3, because the ray you specify for the image of G has to start at whatever point J mapped to. Once you say: $f(J)=G$ then the next point has to map to a ray \vec{G}

Note that it's OK to omit the last condition in using axiom 3 (and in that case you can say the isometry exists, but you do not know that it is unique-there may be more than one)
3. Which (if any) of these are correct ways to use axiom 3 ?

By Axiom 3, there is an isometry, f, such that $f(J)=K$ and $f(I) \in \overrightarrow{K G}$ and
a. $f(L)$ is on the side of $\overleftrightarrow{K G}$ that includes H

The points you use to define a function by axiom 3 have to be non-collinear. J, I and L are on the same line, so you can't use that set of points with Axiom 3. You can use patty paper to try to move I, J and L, and you'll find that it doesn't work.
b. $f(O)$ is on the side of $\overleftrightarrow{K G}$ that includes J

This works fine: \mathbf{J}, \mathbf{I} and \mathbf{O} are not collinear, the ray $f(I) \in \overrightarrow{K G}$ starts at the right point. The line $\overleftrightarrow{K G}$ is the correct line to use, and H is not on the line.
c. $f(O)$ is on the side of $\overleftrightarrow{K G}$ that includes L

This also works fine: \mathbf{J}, \mathbf{I} and \mathbf{O} are not collinear, the ray $f(I) \in \overrightarrow{K G}$ starts at the right point. The line $\overleftrightarrow{K G}$ is the correct line to use, and L is not on the line $\overleftrightarrow{K G}$.

Note that c is a reflected version of b : both are possible ways an isometry could happen. This would be a great problem to trace J, I and O onto, and see if you can slide the patty paper around to match the conditions in b and c.
4. Which (if any) of these are correct ways to use axiom 3 ?

By Axiom 3, there is an isometry, f, such that $f(J)=K$ and $f(I) \in \overrightarrow{K A}$ and
a. $f(O)$ is on the side of $\overleftrightarrow{K A}$ that includes D .

b. $f(O)$ is on the side of $\overleftrightarrow{K A}$ that includes C .

Both of these are fine: \mathbf{J}, \mathbf{I} and \mathbf{O} are not on the same line, the ray $f(I) \in \overrightarrow{K A}$ starts at the correct point, $\overleftrightarrow{K A}$ is the corresponding line, and neither \mathbf{D} nor \mathbf{C} are on the same line.

These two descriptions actually give the exact same function: C and D identify the same side of the line. Often there are multiple ways of naming the same line or the same side of a line.
5. I am trying to specify a rotation. Which of these is a correct way to complete using Axiom 3. circle all that work By Axiom 3, there is an isometry, f, such that $f(J)=J$ and $f(I) \in \overrightarrow{J F}$ and $f(O)$ is on the side of $\overleftrightarrow{J F}$ that
a. includes H
b. includes M
c. includes I

Both b and \mathbf{c} are correct. In the rotation O would map to \mathbf{M}, but \mathbf{M} and I are on the same side of $\overleftrightarrow{J F}$, so both are correct. H would have O mapped to the wrong side of the line (so it would be an isometry, but the isometry wouldn't be a rotation)
6. Does this specify a rotation?

By Axiom 3, there is an isometry, f, such that $f(J)=J$ and $f(I) \in \overrightarrow{J B}$ and $f(O)$ is on the side of $\overleftrightarrow{J B}$ that includes I

Yes, this is exactly the same rotation as the one in \#5, the only difference is that I have named the ray $\overrightarrow{J B}$ instead of $\overrightarrow{J F}$, but those are two names for the same ray, so it doesn't change the function.

