Geometry Axioms and Theorems

Definition: The plane is a set of points that satisfy the axioms below. We will sometimes write E^{2} to denote the plane.

Axiom 1: There is a metric on the points of the plane that is a distance function, which we will denote $d: E^{2} \times E^{2} \rightarrow[0, \infty)$. Given points $A, B \in E^{2}$, then $d(A, B)$ is called the distance between the points A and B, and we also use the notation: $d(A, B)=\underline{A B}$. The distance function satisfies the conditions
a) $d(A, B)=0$ if and only if $A=B \quad \underline{A B}=0$ if and only if $A=B$
b) $d(A, B)=d(B, A)$
$\underline{A B}=\underline{B A}$
c) If $A, B, C \in E^{2}$ then $d(A, B)+d(B, C) \geq d(A, C)$
$\underline{A C} \leq \underline{A B}+\underline{B C}$
Definition: Given two points $A, B \in E^{2}$, the line segment between them is defined to be the set: $\overline{A B}=\left\{X \in E^{2} \mid \underline{A X}+\underline{X B}=\underline{A B}\right\}$

Q1: How can we use the definition of a segment to define a ray?
$\overrightarrow{A B}=\left\{X \in E^{2} \mid \underline{A X}+\underline{X B}=\underline{A B} \quad\right.$ or $\left.\quad \underline{A B}+\underline{B X}=\underline{A X}\right\}$
Q2: How can we use the definition of a segment and/or ray to define an infinite line?
*Write a definition—due Weds 9/11

Q3: If there are 4 points on a line, and in order they are $A-B-C-D$, what equation or equations would be true about the distances between those points?
$\underline{A B}+\underline{B C}+\underline{C D}=\underline{A D}$

Q4: If you were going to define a circle using the distance function, what would the definition be?

Given a (center) point $A \in E^{2}$ and a (radius) distance $r \in[0, \infty)$, the circle with center A and radius r is defined to be $\left\{X \in E^{2} \mid \underline{A X}=r\right\}$ and we will sometimes denote it $\odot(A, r)$

Theorem (*try to prove for Wednesday*-may be really easy, may be impossible: this is a test to see if our definition of "order" is good enough): Given $A-B-C-D$ (which means, by definition, $\underline{A B}+\underline{B C}+\underline{C D}=\underline{A D}$), prove that $\underline{A B}+\underline{B C}=\underline{A C}$

