Given

quad $A B C D$ suck that $\overline{A D} \cong \overline{B C}$

$$
\text { and } m \angle A D C=m \angle B C D=90^{\circ}
$$

By SAS, because $\overline{A D} \cong \overrightarrow{B C}$

$$
\begin{aligned}
& \overline{D C} \cong \overline{C D} \\
& \angle A D C \cong \angle B C D \\
& \triangle A D C \cong \triangle B C D \\
& \text { so }: \angle C A D \cong \angle D B C \\
& \angle A C D \cong \angle B D C
\end{aligned}
$$

$\overline{A C} \cong \overline{B D} \rightarrow$ diagonals are congruent!
By SSS, because: $\overline{B D} \cong \overline{A C}$

$$
\overrightarrow{A D} \cong \overrightarrow{B C}
$$

$$
\overline{A B} \cong \overline{A B}
$$

So $\triangle A B D \cong \triangle B A C$

Starting with the givens, we showed that the two triangles in purple and blue are congruent. We can use these triangles to prove the diagonals are congruent
$\triangle A B D \cong \triangle B A C$
So $\angle A D B \cong \angle B C A$
and $\angle A B D \cong \angle B A C$
and $\angle B A D \cong \angle A B C$
By Q1

$$
\begin{aligned}
& \text { QI } \\
& \frac{\angle A D C}{90} \\
& \text { more }^{90}+9 \angle B C D
\end{aligned}+\frac{m \angle B A D S}{}+m \angle A B C=360
$$

Next we got two more congruent triangles and used them along with

$$
\downarrow \text { algebra (easy) }
$$ the sum of angles in a quadrilateral to prove that the it is a rectangle

$$
m \angle B A D=90^{\circ}
$$

it's a rectangle!

$\angle A B+m \angle A B C=$

$$
90+90=180^{\circ}
$$

(think $\overleftrightarrow{A B}$ transversal)

$$
\stackrel{A D}{\leftrightarrows} \| \stackrel{A B}{\leftrightarrows}
$$

$$
\begin{aligned}
& m \angle A D C+m \angle D A B=90+90=180 \overline{A D} \| \overline{B C} \\
& \quad(\text { think } \overparen{A D} \quad \text { transussal })=\frac{A}{A C} \text { a }
\end{aligned}
$$

so $\stackrel{A B}{ } \| \stackrel{C D}{C D}$
By SAS $\angle D A C \cong \angle B C A$

$$
\overline{A D} \cong \overline{B C}, \overline{A C} \cong \overline{C A}
$$

so $\triangle D D A C \triangle B C A$
$\angle D A C=\angle B C A$
Then we used the right angles to prove it is a parallelogram.

Then we used the parallel sides to prove that some angles were equal (Axiom 7), and hence the purple and orange triangles here are congruent

Those triangles let us show the other pair of sides are congruent

On the first page, we proved a lot of angles were equal, but not the ones we needed to know to prove that triangles ADC and CBA are congruent, so we needed to know and use parallel sides.

If you had another rectangle (but you didn't know that any sides were congruent), you could prove the sides were parallel, and then get congruent angles from Axiom 7, and use that to prove that the opposite sides were congruent.

D
So by $A \times 7$ (Tum S4)

$$
\angle A B E \cong \angle C D E
$$

$$
\begin{gathered}
\angle A B E \cong \angle C D E \\
\text { and } \angle B A E \cong \angle D C E
\end{gathered}
$$

By: AS A

$$
\begin{aligned}
& \triangle D C E \cong \triangle B A E \\
& \text { so } \overline{A E} \cong \overline{C E} \text { and } \overline{\triangle E} \cong \overline{B E} \\
& E \text { is the midpoint of both diagonals }
\end{aligned}
$$

The last thing we did in class, was to take that same quadrilateral we have been working on since the beginning and prove that the red and yellow triangles here are congruent, and so the intersection of the two diagonals is the midpoint of both diagonals.

If you understand all of these steps, you should be able to use them to prove a lot more of the quadrilateral conjectures.

