Finish the Pythagorean Theorem proof assignment:

Theorem 68 (Pythagorean Theorem): Given a right triangle with legs of length a and b and hypotenuse of length c, then the area of a square constructed on the hypotenuse is equal to the sum of the areas of the squares constructed on the two legs.

Proof: Let $\triangle A B C$ be a right triangle with $d(B, C)=a, d(B, C)=a$, $d(A, B)=c$ and $m \angle A C B=90^{\circ}$
[label the triangle]

[fill in the blanks with an axiom or theorem]
By \qquad , we can extend side $\overline{C B}$ to $\overline{C D}$ where $B \in \overline{C D}$ and $d(C, D)=a+b$

By \qquad , we can construct a square $C D E F$ where one side is $\overline{C D}$. Without loss in generality we may assume $A \in \overline{C F}$.

By \qquad , we can find points G and H, such that $G \in \overline{F E}$ such that $d(F, G)=b$ and $H \in \overline{E D}$ such that $d(E, H)=b$.

By \qquad $: d(C, B)+d(B, D)=d(C, D)=a+b, \quad[$ draw and label the construction below]
$d(C, A)+d(A, F)=d(C, F)=a+b$
$d(F, G)+d(G, E)=d(F, E)=a+b$
$d(E, H)+d(H, D)=d(E, D)=a+b$
So, by substitution and algebra:
$d(A, F)=$ \qquad $d(G, E)=$ \qquad
$d(H, D)=$ \qquad

$$
d(B, D)=
$$

\qquad
And $m \angle A C B=m \angle$ \qquad
$=m \angle$ \qquad $=m \angle$ \qquad $=90^{\circ}$

Hence, by \qquad , [axiom or thm]
$\Delta C A B \cong \triangle F G A \cong \triangle E H G \cong \triangle D B H$
So GHBA is a rhombus because
[prove, using the facts above, that $m \angle A B H=90^{\circ}$]

Similarly, $m \angle G A B=m \angle H G A=m \angle B H G=90^{\circ}$, and so $G H B A$ is a square
By \qquad , area $(C D E F)=(a+b)^{2}$

By \qquad , $\operatorname{area}(C D E F)=4 \cdot \operatorname{area}(\triangle C A B)+\operatorname{area}(G H B A)$

And by \qquad and \qquad , $4 \cdot \frac{1}{2} a \cdot b+c^{2}$

By substitution: $(a+b)^{2}=2 a b+c^{2}$ [use algebra to complete to proof that $a^{2}+b^{2}=c^{2}$

