Plane Geometry

The **Plane** is a set of points that satisfy the axioms below

Axiom 1: There is a distance function on the plane (also called a metric) d: Plane×Plane→ $[0,\infty)$ with the properties:

- d(A,B) = 0 if and only if A = B
- d(A,B) = d(B,A)
- $d(A,C) \le d(A,B) + d(B,C)$

where A, B, C are points in the plane. The distance between two points d(A, B) can also be written AB

Defn: The *line segment AB* between A and B is the subset of the plane that contains all of the points of the plane that lie on the shortest path between A and B. In set notation: $\overline{AB} = \{X \mid d(A, X) + d(X, B) = d(A, B)\}$. The length of the line segment is defined to be the distance between the endpoints: $m(\overline{AB}) = d(A, B) = AB$.

The ray AB starting at A and passing through B consists of all of the points of the plane that lie on a shortest path with endpoint A that includes B, that is, $\overrightarrow{AB} = \{X \mid X \in \overrightarrow{AB} \text{ or } B \in \overrightarrow{AX}\}$

The *line* AB that includes A and B is the subset of the plane that contains all of the points of the plane that lie on a shortest path that includes both A and B, that is, $\{X \mid A \in \overline{BX} \text{ or } B \in \overline{AX} \text{ or } X \in \overline{AB}\}$

Problem 1: Rewrite the definitions of line and ray using distance equations (using the definition of a segment)

Defn: A *circle* with center point C and radius length r > 0 is the set of points in the plane that are distance r from C: cir $(C, r) = \{X \mid d(C, X) = r\}$

Defn: A set of points is *collinear* if all of the points lie on the same line.

Axiom 2: Every infinite line and every circle in the plane *separates* the plane into two *sides* (the sides are subsets of the plane that together make up all of the rest of the plane besides the separating shape) with the property that if the points A and B are on opposite sides of the shape, then any line segment or circle that contains both A and B also contains a point of the separating shape.

Defn. A function f is *invertible* if it has an inverse function f^{-1} such that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$

Axiom 3: There is a set of invertible <u>distance-preserving</u> mappings (functions) on the plane called *isometries* (also called isometric transformations, rigid transformations or rigid motions), such that for any non-collinear sets of points A, B, C and distinct points D, E and a specified side of \overrightarrow{DE} , there exists a unique isometry f: Plane \rightarrow Plane such that f(A) = D and $f(B) \in \overrightarrow{DE}$ and f(C) lies on the specified side of \overrightarrow{DE} . (Unique means there is one and only one such isometry)

Problem 2: If you wanted an isometry that rotated the plane around point *B* through angle $\angle ABC$ (oriented from \overrightarrow{BA} to \overrightarrow{BC}), how could you use the properties in axiom 3 to get one?

Problem 3: If you wanted an isometry that reflected the plane across line AB, how could you use the properties in axiom 3 to get one?

Problem 4 (Challenge): If you wanted a rotation around point A by angle $\angle BCD$, how could you describe that by specifying 3 points?

Problem 5:

- a) Is it allowed by axiom 3, given non-collinear points *A*, *B*, *C* and *D*, *E*, *F* to say that there is an isometry that sends *A* to *F*, *B* to a point on \overrightarrow{FE} and *C* to the same side of \overleftarrow{FE} as *D*? Why or why not?
- b) Is it allowed by axiom 3, given non-collinear points *A*, *B*, *C* and *D*, *E*, *F* to say that there is an isometry that sends *A* to *D*, *B* to a point on \overrightarrow{FE} and *C* to the same side of \overleftarrow{FE} as *D*? Why or why not?

Defn: The *image* of a point, A under a function f is the point f(A) that it is mapped to. The image of a set S under a function f is the set consisting of the images of all of the points in S, that is, $f(S) = \{f(X) | x \in S\}$. If the function is an isometry, then image of a set is called an *isometric image*.

Problem 6: Prove that if a function f is an isometry, then its inverse f^{-1} is also an isometry.

Theorem 1: Isometric images:

- a) The isometric image of a line segment is a line segment
- **b)** The isometric image of a ray is a ray
- c) The isometric image of a line is a line
- d) The isometric image of a circle is a circle with the same radius.

Axiom 4: If A and B are points, and r is a positive number, then there exists a point C such that $B \in AC$ and d(B,C) = r

Defn: A set of four points A, B, C, and D is said to have the order A-B-C-D if d(A,B)+d(B,C)+d(C,D) = d(A,D)

Theorem 2: Prove that points A, B, C, D have order A-B-C-D if and only if they have order D-C-B-A

Theorem 3: Prove that if four points have an order then they are collinear (there is a line that contains all four of them)

Axiom 5: If four points lie on the same line, then they have an order.

- **Theorem 4:** If three points X, Y, Z satisfy a segment equation d(X, Y) + d(Y, Z) = d(X, Z), then each point lies on the line defined by the other two. Ie. $X \in \overrightarrow{YZ}$, $Y \in \overrightarrow{XZ}$ and $Z \in \overrightarrow{XY}$
- **Theorem 5:** If four distinct points have an order W X Y Z, then each point lies on the line defined by any two of the other three points.

9/27/2018

Theorem 6: If $C \in \overrightarrow{AB}$ then $\overrightarrow{AB} \subseteq \overrightarrow{AC}$

Theorem 7: If $B \in \overrightarrow{AC}$ then $C \in \overrightarrow{AB}$

Theorem 8: If $C \in \overrightarrow{AB}$ then $\overrightarrow{AB} = \overrightarrow{AC}$

Theorem 9: If $C, D \in \overrightarrow{AB}$ then $\overrightarrow{AB} = \overrightarrow{CD}$

Theorem 10: Distinct lines \overrightarrow{AB} and \overrightarrow{CD} intersect in at most one point.

Axiom 6: Two distinct rays that share a common origin point separate the plane into two sides.

Defn, An *angle* consists of two distinct rays (for example *AB* and *AC*) that share a common origin point. We write $\angle BAC$. If we wish to consider a side of the angle together with the rays, then we can allow for angle measurements that are greater than 180°. In this document, we will use the notation $\angle BAC$ or occasionally $\angle BAC$, *side* when we are specifying a ray and a side, and we will call that a *solid angle*.

 $\measuredangle BAC$ without a side denotes the solid angle where the side does not include AB.

Defn. Two subsets of the plane (eg, segments, circles or angles) are *congruent* if there is an isometry that maps one onto the other. The symbol \cong denotes congruence.

Theorem 11: A segment is congruent to itself in the opposite order. Ie. $\overline{AB} \cong \overline{BA}$

Theorem 12: An angle is congruent to itself in the opposite order. Ie. $\angle BAC \cong \angle CAB$

Theorem 13: The identity map is an isometry, and hence congruence is reflexive: If S is a subset of the plane, then $S \cong S$

Theorem 14: The inverse of an isometry is also an isometry, and hence congruence is symmetric: If $S \cong T$ then $T \cong S$ (where S and T are subsets of the plane).

Theorem 15: The composition of two isometries is an isometry, and hence congruence is transitive: if $S \cong T$ and $T \cong V$ then $S \cong V$

Theorem 16: If two segments are congruent, then they have the same length.

Axiom 7: No segment, circle or polygon is congruent to a proper subset of itself. No angle is congruent to a proper subset of itself, and no solid angle is congruent to a proper subset of itself in a way that preserves the origin point.

Axiom 8: There is a function m that is an angle measurement, so that

- $m(\angle BAC) \in (0,180^\circ]$ or $m(\angle ABC, side) \in (0,360^\circ)$
- If $\angle ABC \cong \angle DEF$ then $m(\angle ABC) = m(\angle DEF)$
- $m(\angle BAC) = m(\angle BAC, side)$ if $\angle BAC, side$ does not include \overline{AB} (otherwise $360^{\circ} m(\angle BAC) = m(\angle BAC, side)$)
- If $\measuredangle BAC$, $s1 \cup \measuredangle CAD$, $s2 = \measuredangle BAD$, s3 then $m(\measuredangle BAC, s1) + m(\measuredangle CAD, s2) = m(\measuredangle BAD, s3)$

9/27/2018