Proving the 3 is like the 5 but you only do part of the the 5 work

Given: $\quad w-X-Y-Z$
by def.: $\quad d(\omega, x)+d(x, y)+d(y, z)=d(\omega, z)$

$$
\text { by } A x \left\lvert\,\left\{\begin{array}{l}
d(w, y) \leq d(w, x)+d(x, y) \tag{2}\\
d(w, z) \leq d(w, x)+d(x, z) \\
d(x, z) \leq d(x, y)+d(y, z) \\
d(w, z) \leq d(w, y)+d(y, z)
\end{array}\right.\right.
$$

$$
\begin{equation*}
d(w, z) \leq d(w, x)+\underbrace{d(x, z)}_{(3)} \leq d(w, x)+d(x, y)+d(y, z)=d(w, z) \tag{1}
\end{equation*}
$$

so

$$
d(w, z)=d(w, x)+d(x, z)=d(w, x)+d(x, y) d(y, z)=d(w, z)
$$

so $d(w, z)=d(w, x)+d(x, z)$
and You don't need lined or fine 9 , and when you finish fine A^{2}, then you gov straight to the conclusion', you don't use theorem 4

$$
\begin{equation*}
d(x, z)=d(x, y)+d(y, z) \tag{7}
\end{equation*}
$$

Thu 38
So (by 6), $x \in \overline{W z} \leq \stackrel{W z}{W}$
So (by 8), $y \in \overline{w z} \leq \overleftrightarrow{W z}$, so $w, x, y, z \in \stackrel{W}{\rightleftarrows}$ so they are collier

$$
\begin{equation*}
d(w, z) \leq d(w, y)+d(y, z) \leq d(w, x)+d(x, y)+d(y, z)=d(w, z) \tag{1}
\end{equation*}
$$

(5)

$$
\begin{equation*}
d(w, z)=d(w, y)+d(y, z)=d(w, x)+d(x, y)+d(y, z)=d(w, z) \tag{2}
\end{equation*}
$$

so $\quad d(w, z)=d(w, y)+d(y, z)$

After lines, you jump straight to showing that points (arezon lines (see bottom of page 1). The rest of this page isn't used in theorem 3.

So $d(w, y)=d(w, x)+d(x, y)$

$$
\begin{aligned}
& d(w, z)=d(w, x)+d(x, z)(6) \\
& \text { So by tum } 4 x \in \overrightarrow{W z}, w \in \overrightarrow{x z}, z \in \stackrel{\leftrightarrow}{w}
\end{aligned}
$$

$$
d(x, z)=d(x, y)+d(y, z) \quad(7)
$$

$$
d(w, z)=d(w, y)+d(y, z)
$$

$$
d(w, y)=d(w, x)+d(x, y)
$$

so by the 4 w $\longleftrightarrow \overleftrightarrow{x y}$, $x \in \longleftrightarrow y, y \in \omega x$
so each point lies on the line defined by any two of the other thee points

