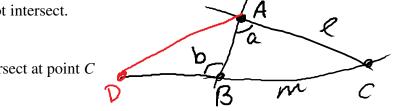
Theorem 32 (If AIA then parallel): Given two lines and a transversal line that intersects both lines, if the alternate interior angles are congruent, then the lines are parallel.

Given: lines *l* and *m* that both intersect line *t*, with alternate interior angles $\angle a$ and $\angle b$ at intersection points $A = l \cap t$ and $B = m \cap t$ respectively, such that $\angle a \cong \angle b$

To prove: *l* and *m* do not intersect.



Proof: Suppose l and m do intersect at point C

There are 2 cases:

Case 1: *C* is on the same side of *t* as $\angle a$

Case 2: *C* is on the same side of *t* as $\angle b$

By theorem _____, there exists a point *D* on line *m* such that *D* is on the opposite side of *t* from *C*, and $\overline{AC} \cong \overline{BD}$

Then $\triangle ABD$ and $\triangle BAC$ are triangles, and

- $\overline{BA} \cong \overline{AB}$
- $\angle a \cong \angle b$
- $\overline{AC} \cong \overline{BD}$

So, by theorem $\ \Delta ABD \cong \Delta BAC$ And hence, $\angle BAD \cong \angle ABC$

By axiom _____ $m \angle b + m \angle ABC = 180^{\circ}$ By substitution $m \angle a + m \angle BAD = 180^{\circ}$ Let *E* be a point on line *l* that is on the opposite side of *t* from *C*, Then by axiom ______ $m \angle a + m \angle BAE = 180^{\circ}$ By combining the equations $m \angle a + m \angle BAD = 180^{\circ}$ and $m \angle a + m \angle BAE = 180^{\circ}$, we get that $\angle BAD \cong \angle BAE$ By theorem _____, since the angles share side \overrightarrow{BA} and lie on the same side of *t*, $\overrightarrow{AD} = \overrightarrow{AE}$ and $D \in \overrightarrow{AE} = l$ Thus, $C, D \in l \cap m$ which contradicts theorem _____.

So we know that l and m cannot intersect in a point on the same side of t as $\angle a$

Case 2: *C* is on the same side of *t* as $\angle b$

By theorem _____, there exists a point *D* on line ____such that ...

Then $\triangle ABD$ and $\triangle BAC$ are triangles, and

So, by theorem, we get
And hence,
By axiom,+=
By substitution
Let <i>E</i> be a point on line that is
Then by axiom, we get
By combining the equations and,
we get that
By theorem, since

Thus, _______which contradicts theorem _____.

So we know that l and m cannot intersect at a point on the same side of t as $\angle b$, and since all points in the plane are on t or on one of the two sides of t, therefore l and m cannot intersect, and are parallel.