Given a ray with endpoint A, and a point B not on the ray, there is an isometry called a *rotation* that fixes A and maps the point B to a point on the ray, with the additional property that the angle between \overrightarrow{AC} and its image has the same measure for every point C in the plane.

Theorem 10 (Lemma): Given two congruent segments $\overline{AB} \cong \overline{DE}$, there is an isometry that maps A to D and B to E.

Lemma 10a. Given points A and D, there is a point P such that $\overline{PA} \cong \overline{PD}$

Proof: Consider circles $\bigcirc A, AD$ and $\bigcirc D, DA$ The circles intersect. (why?) Call one of the points of intersection *P* Then $\overline{PA} = \overline{PD}$ (why?)

Lemma 10b. There is an isometry that maps A to D,

Proof: By Lemma 10a, there is a point *P* such that $\overline{PA} \cong \overline{PD}$ Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation with fixed point *P* that maps *A* to a point on the ray \overline{PD} Let f(A) = A'Then $A' \in \overline{PD}$

Then m(PA) = m(f(P)f(A)) = m(PA') (why?)

So m(PD) = m(PA') (why?)

So by theorem 2, A' = D (check hypotheses) And so the isometry *f* maps *A* to *D*.

Proof: By lemma 10b, there is an isometry $f : \mathbb{R}^2 \to \mathbb{R}^2$ such that f(A) = DLet f(B) = B'Let $g : \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation with fixed point *D* that maps *B*' to a point on the ray \overrightarrow{DE} Let f(B') = B''Then $B'' \in \overrightarrow{DE}$ And m(DB'') = m(DE) (why?)

So by theorem 2, B'' = E (check hypotheses)

By theorem 9, $g \circ f$ is an isometry. $g \circ f(A) = D$ (why?) $g \circ f(B) = E$ (why?) Thus $g \circ f$ is an isometry that maps A to D and B to E **Theorem 11 (Lemma)**: Given triangles $\triangle ABC$ and $\triangle DEF$ such that $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$ and $\angle ABC \cong \angle DEF$, there is an isometry that maps A to D, B to E and C to F.

Lemma 11a: Given triangles $\triangle ABC$ such that $\overline{AB} \cong \overline{DE}$, there is an isometry that maps A to D and B to E such that C is mapped to a point on the same side of \overline{DE} as F. by Lemma 10, there is an isometry $f : \mathbb{R}^2 \to \mathbb{R}^2$ such that f(A) = D and f(B) = ELet f(C) = C'

Since C is not on line \overrightarrow{AB} , C' is not on line \overrightarrow{DE} by theorem 5.

case 1: C' is on the same side of \overrightarrow{DE} as F.	case 2: C' is on the opposite side of \overrightarrow{DE} from F.
Then <i>f</i> is an isometry that maps <i>A</i> to <i>D</i> and <i>B</i> to <i>E</i> such that <i>C</i> is mapped to a point on the same side of \overrightarrow{DE} as <i>F</i> .	Let $g: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection that fixes \overrightarrow{DE} Then $g(D) = D$ and $g(E) = E$ Let $g(C') = C''$ Then C'' is on the same side of \overrightarrow{DE} as F . So $g \circ f$ is an isometry that maps A to D and B to E such that C is mapped to a point on the same side of \overrightarrow{DE} as F .

proof of theorem 11:

By lemma 11a, there is an isometry $f : \mathbb{R}^2 \to \mathbb{R}^2$ isometry that maps *A* to *D* and *B* to *E* such that *C* is mapped to a point on the same side of \overrightarrow{DE} as *F*. Let f(C) = C'Then *C*' is on the same side of \overrightarrow{DE} as *F*. $m(\angle C'ED) = m(\angle FED)$ (why?)

By theorem 1, $C' \in \overrightarrow{ED}$ (check hypotheses)

m(EC') = m(EF) (why?)

By theorem 2, C' = F

Hence, f is an isometry that maps A to D, B to E and C to F.