Equilateral triangle: List the steps for constructing an equilateral triangle, and prove that the resulting construction is equilateral and equiangular.

Given: a segment \overline{AB}

Construction: Construct circle C_1 with center A and radius \overline{AB} Construct circle C_2 with center B and radius \overline{AB} . Let C be one of the intersection points of the two circles. Construct segments \overline{BC} and \overline{AC}

Claim: $\triangle ABC$ is an equilateral triangle.

Proof: \overline{BC} and \overline{AC} both have the same length as \overline{AB} because they are radii of circles with radius \overline{AB} , hence the triangle is equilateral.

Perpendicular line through a point on the line (one of many versions): List the steps for constructing a line perpendicular to a given point, and through a given point on the line, and prove that the resulting construction is a perpendicular line that passes through the given point.

Given: line *l* and point $P \in l$

Construction: Construct a circle C_0 with center *P* and radius r > 0

Let points A and B be the intersections of line l and circle C_0 .

Construct circle C_1 with center A and radius \overline{AB}

Construct circle C_2 with center B and radius \overline{AB} .

Let C be one of the intersection points of the two circles.

Construct the line *CP*

Claim: \overrightarrow{CP} contains point *P* and is perpendicular to line *l*.

Proof: \overrightarrow{CP} contains point *P* by construction. $\overrightarrow{AC} \cong \overrightarrow{BC}$ because they are radii of circles with radius \overrightarrow{AB} $\overrightarrow{AP} \cong \overrightarrow{BP}$ because they are radii of circle C_0 $\overrightarrow{CP} \cong \overrightarrow{CP}$ since it is the same segment. So, by SSS, $\triangle ACP \cong \triangle BCP$ Hence, $\angle APC \cong \angle BPC$ $m \angle APC + m \angle BPC = 180^\circ$ since the angles make a straight line, and so by substitution $2m \angle APC = 180^\circ$

So we can conclude that $m \angle APC = 90^\circ$ and \overrightarrow{CP} is perpendicular to line *l*.

Congruent angle: List the steps for constructing an angle congruent to a given angle on a given side of a given ray, and prove that the resulting construction is congruent to the given angle.

Given: An angle $\angle BAC$ and a ray \overrightarrow{DE} and a side of the line \overleftarrow{DE}

Construct: Construct a circle C_{AB} with center A and radius \overline{AB}

Let C' be the intersection of circle C_{AB} with the ray \overrightarrow{AC}

Construct circle $C_{D,AB}$ with center D and radius \overline{AB}

Let E' be the intersection of circle $C_{D,AB}$ and ray \overrightarrow{DE}

Construct a circle $C_{E',BC'}$ with center E' and radius $\overline{BC'}$

Let F be the intersection of $C_{E'BC'}$ with C_{DAB} on the given side of \overrightarrow{DE}

Construct ray \overrightarrow{DF}

Claim: $\angle EDF \cong \angle BAC$

Proof: $\overline{AB} \cong \overline{DE'}$ and $\overline{AC'} \cong \overline{DF}$ since they are all radii of circles with radius \overline{AB} $\overline{E'F} \cong \overline{BC'}$ since they are radii of circles with radius $\overline{BC'}$ So, $\Delta BAC' \cong \Delta E'DF$ by SSS Hence $\angle BAC = \angle BAC' \cong \angle E'DF = \angle EFD$ (CPCTC)

Parallel line:

Given: line l and point P not on the line.

Construct: Let m be a line through P that is perpendicular to line l (construction of perpendicular through a point not on the line) Let n be a line through P that is perpendicular to line m (construction of a perpendicular through a point on the line)

Claim: n is parallel to l

Proof: Let $\angle a$ and $\angle b$ be alternate interior angles to line *m* between lines *l* and *n* (note that *l* and *n* do not intersect at line *m* because *n* contains point *P* and *l* does not). By construction $m \angle a = 90^\circ = m \angle b$ and hence $\angle a \cong \angle b$. By theorem 19, *l* is parallel to *n*. **Perpendicular line through a point not on the line:** List the steps for constructing a line perpendicular to a given point, and through a given point not on the line, and prove that the resulting construction is a perpendicular line that passes through the given point.

Given: a line l and a point P not on l.

Construct: Let Q be a point on the other side of l from P.

Construct circle $C_{P,Q}$ with center P and radius \overline{PQ}

Let A and B be the points of intersection of circle $C_{P,O}$ with line l.

Construct circle C_1 with center A and radius \overline{PQ}

Construct circle C_2 with center B and radius \overline{PQ} .

Since *A* and *B* lie on circle $C_{P,Q}$, we know that $\overline{AP} \cong \overline{PQ} \cong \overline{BP}$ and hence *P* is on C_1 and C_2 Let *D* be the point of intersection of C_1 and C_2 on the opposite side of *l* from *P*. Construct the line \overrightarrow{DP}

Claim: \overrightarrow{DP} is perpendicular to l.

Proof: Let *E* be the intersection of \overrightarrow{DP} and *l*. $\overrightarrow{AP} \cong \overrightarrow{BP}$ and $\overrightarrow{AD} \cong \overrightarrow{BD}$ because they are all radii of circles with radius \overrightarrow{PQ} . $\overrightarrow{PD} \cong \overrightarrow{PD}$ (same segment) So $\triangle APD \cong \triangle BPD$ by SSS And thus $\angle APE = \angle APD \cong \angle BPD = \angle BPE$ (CPCTC) We also know that $\overrightarrow{PE} \cong \overrightarrow{PE}$ (same segment) And together with the results above that $\overrightarrow{AP} \cong \overrightarrow{BP}$ and $\angle APE \cong \angle BPE$ we can conclude that $\triangle APE \cong \triangle BPE$ Thus $\angle AEP \cong \angle BEP$ Since $\angle AEP$ and $\angle BEP$ together make a straight line, $m\angle AEP + m\angle BEP = 180^{\circ}$ By substitution $2m\angle AEP = 180^{\circ}$ and hence $m\angle AEP = 90^{\circ}$ Thus \overrightarrow{DP} is perpendicular to *l*.