Axioms for some geometries:

Euclidean	Spherical	Hyperbolic	Axiom 1A: Given any two points, there is one and only
			one straight line that contains both points.
			Axiom 1B: Given any two points, there is a straight line
			that contains both points, and given any 3 points there
			exists no more than one line that contains all of them
			Axiom 2: The complete straight line, the triangle and the
			circle separate the plane into two regions such that any
			line or arc of a circle joining a point in one region to a
			point in the other region intersects the separating figure.
			Axiom 3 part 1:
			Given a directed line containing a given point (A), and
			any line segment, there exists another point (B) and a
			segment between them that lies on the line in the given
			direction such that the segment (\overline{AB}) is congruent to the
			given line segment.
			Axiom 3 part 2:
			Given a directed line (\overrightarrow{AB}) and a side of the line
			containing another directed line or segment, and a given
			angle, there exists another directed line (\overrightarrow{AC}) with the
			same given point, on the given side, such that the angle
			between the lines ($\angle BAC$) is congruent to the given
			angle
			Axiom 4 (SAS): If two sides of one triangle are
			congruent to two corresponding sides of another triangle,
			and the angles contained by those sides congruent, then
			the triangles are congruent
			Postulate 5a (Parallels): Through a point not on a given
			line there exists at least two lines which do not meet the
			given line
			Postulate 5b (Parallels): Any two lines intersect at two
			points
			Postulate 5c (Parallels): Through a point not on a given
			line there exists at exactly one lines which does not meet
			the given line.