Proof from class	Notes and comments
Given \overline{AB} and \overline{AC} such that	
• A, B and C are all on the same line	Equivalent to saying AB and AC are on the
	same line
• B and C are the same direction	Equivalent to saying B and C are on same side
from A	of A on the line
• $AB \cong AC$	Equivalent to proving that B-C
To prove: $\overline{AB} = \overline{AC}$	Equivalent to proving that D=C
Proof:	Equivalent to supposing that $\overline{AC} \neq \overline{AB}$
Suppose $B \neq C$	Equivalent to supposing that $AC \neq AD$
Since A, B and C are on the same line, one	
point is between the other two, and because B and C are in the same direction	
from A A is not between B and C so	
<i>either</i> B is between A and C <i>or</i> C is	
between A and B.	
Without loss in generality, we may assume	Saying "without loss in generality, we may
that B is between A and C	assume means that there are two conditions that are essentially the same and we're just going to
	write the proof for one of them. You can say
	this any time you're sure (and it's clear) that the
	two cases are interchangeable.
$m(\overline{AB}) + m(\overline{BC}) - m(\overline{AC})$ (axiom 3)	Because B is between A and C and lies on the
$m(\mathbf{n}\mathbf{D}) + m(\mathbf{D}\mathbf{C}) - m(\mathbf{n}\mathbf{C})$ (axiom 3)	because B is between A and C and nes on the
We know $m(\overline{AR}) - m(\overline{AC})$	The initial of the segment AC
We know $m(AB) = m(AC)$	Because $AB \cong AC$ and definition of congruence
So, $m(AB) + m(BC) = m(AB)$	Algebraic substitution
And $m(BC) = 0$	Subtract $m(AB)$ from both sides
Hence $\mathbf{B} = \mathbf{C}$	Using axiom 3 part i. a.
Therefore $\overline{AB} = \overline{AC}$	

Assignment: prove

If two congruent angles share a side and whose other sides lie on the same side of the shared side, then their other sides are also shared, and the angles are identically equal as point sets.