Compare each pair of fractions (find which one is larger) using fraction bars and/or fraction circles. The goal of this activity is for you to reason about fraction size using the repeated partitions (partition a whole into equal pieces to find the size of a piece, then add repeated pieces. Each set of fractions has a pattern.

- It is your job to find the rule and write it in a way that says what the rule does, and which kinds of fractions it works for.
- Explain/justify the rule using language that talks about the size of the fractional parts (eg. fifths are smaller than sixths) and the number of fractional parts

1. First set of fraction pairs

$3 / 7$	<>	$2 / 7$	Rule: li...
$7 / 10$		$9 / 10$	
$2 / 9$		$1 / 9$	Then...
$8 / 25$		$9 / 25$	

2. Second set of fraction pairs

$1 / 5$	$<>$	$1 / 6$	Rule
$1 / 9$		$1 / 7$	
$3 / 4$		$3 / 5$	
$2 / 7$		$2 / 9$	
$8 / 26$		$8 / 21$	

3. Third set of fraction pairs

$8 / 9$	$<>$	$9 / 10$	Rule
$7 / 8$		$5 / 6$	
$5 / 7$		$7 / 9$	
$8 / 11$		$7 / 10$	
$29 / 32$		$97 / 100$	

4. Combine the reasoning from 1 and 2 to explain which is bigger of these two and how you know:

$3 / 7$		$2 / 8$

