Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

Fraction review practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at all)
a. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in $2 / 3$ of a box of crackers?
i. $\frac{5}{4}+\frac{2}{3}$
b. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3$ of the box, ii. $\frac{5}{4}-\frac{2}{3}$ how many lbs of crackers be left?
c. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If my friends eat $2 / 3 \mathrm{lb}$ of crackers, how many lbs of crackers will be left?
d. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. How many lbs of crackers is in 4 boxes of crackers?
e. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have 4 lbs of crackers, how many boxes is that?
f. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have $2 / 3 \mathrm{lbs}$ of crackers, how many boxes is that?
g. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3$ of a box of crackers, how many lbs of crackers do I have?
h. A full box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. If I have a box of crackers and another $2 / 3 \mathrm{lbs}$ of crackers, how many lbs of crackers do I have?
iii. $\frac{5}{4} \times \frac{2}{3}=\frac{2}{3} \times \frac{5}{4}$
iv. $\frac{5}{4} \div \frac{2}{3}$
v. $\frac{2}{3} \div \frac{5}{4}$
vi. $4 \times \frac{5}{4}=\frac{5}{4} \times 4$
vii. $4 \div \frac{5}{4}$
viii. $\frac{5}{4} \div 4$
ix. $\frac{5}{4}+\left(\frac{5}{4} \times \frac{2}{3}\right)$
x. $\frac{5}{4}-\left(\frac{5}{4} \times \frac{2}{3}\right)$
i. A blue box of crackers holds $5 / 4 \mathrm{lb}$ of crackers. A red box of crackers holds $2 / 3$ lbs of crackers. How many more lbs of crackers are in a blue box than a red box.
j. A blue box of crackers holds $5 / 4 \mathrm{lbs}$ of crackers. A red box holds $2 / 3$ as much as a blue box. How many more crackers are in a blue box than a red box?
2. The question was: How many bowls can you fill, if each bowl holds $2 / 3$ cups of soup and you have 3 1/2 cups of soup?
Doug did:

$$
\frac{7}{2} \div \frac{2}{3}=\frac{21}{6} \times \frac{4}{6}=\frac{21}{4}=5 \frac{1}{4}
$$

Evan did:

Who is correct? What does the $1 / 4$ mean in Doug's solution? (What is it $1 / 4$ of) What does the $1 / 6$ mean in Evan's solution? (what is it $1 / 6$ of)
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
c. Write a number sentence to solve the problem.
d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:
4. Write a word problem for:
a. $\frac{5}{4}+\frac{2}{3}$
b\&c. $\frac{5}{4}-\frac{2}{3}$ (take away or compare)
d. $\frac{5}{4} \times \frac{2}{3}$
e \& f. $\frac{5}{4} \div \frac{2}{3}$ (partition or measurement)
5. Solve a word problem using a diagram
6. Explain a numerical solution from a diagram

Some answers:
1a. iii.
b. x.
c. ii.
d. vi
e. vii f. v.
g. ix
h. i. i. ii. j. x.
2. Doug's answer is more correct without additional labelling: you can fill $51 / 4$ bowls of soup: $1 / 4$ represents $1 / 4$ of a bowl of soup. The $1 / 6$ in Evan's solution means there are 5 bowls of soup and $1 / 6$ of a cup of soup left over.
3. For the problem: Kelly had $5 / 6$ of a cup of sugar. She used $3 / 4$ of it to make a cake. How much sugar did she put in the cake?
a. Draw a diagram to solve the problem.
b. Write a number sentence to solve the problem.

$$
\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{15}{24}=\frac{5}{8}
$$

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)
Each of the 6 ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).
6. Division. For a division problem that is paraphrased as "how many $2 / 5$ are in $11 / 3$ " a diagram might look like:

In order to put $2 / 5$ and $11 / 3$ on the same number line, and get them in the right place, I had to make 15 ths-a common denominator-and find the equivalent fractions with the common denominator:
$\frac{2}{5}=\frac{2 \times 3}{5 \times 3}=\frac{6}{15}$ and $1 \frac{1}{3}=\frac{4 \times 5}{3 \times 5}=\frac{20}{15}$
After I did that, I could make sets of $\frac{2}{5}=\frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is $20 \div 6$. Then I have 3 sets and 2 fifteenth-sized parts left over, which is $2 / 6$ of a set (6 make a whole set):
$1 \frac{1}{3} \div \frac{2}{5}=\frac{20}{15} \div \frac{6}{15}=20 \div 6=\frac{20}{6}=3 \frac{2}{6}=3 \frac{1}{3}$

