| 1. | original | scale factor | new |
| :--- | :--- | :--- | :--- |
| beak | 1 cm |  | 3 cm |
| wing | 4 cm | $\times 3$ | 12 cm |
| tail | 3 cm |  | 9 cm |
| Area | 11 cm |  | $99 \mathrm{~cm}^{2}$ |


3. I have two similar/proportional pictures of a bus. If the smaller bus has area $15 \mathrm{~cm}^{2}$, and the area of the large bus is $60 \mathrm{~cm}^{2}$, what is the (length) scale factor that compares the large one to the small one? $=2$

$$
\begin{aligned}
& \mathrm{cm}^{12} \times \frac{\pi}{4}=6 \frac{0}{\pi} \mathrm{~cm}^{2} \\
& 15 \times 2^{2}=60 \\
& 15=3 \times 5 \mathrm{~cm}^{2} \Rightarrow(3 \times 2) \times(5 \times 2)=60 \mathrm{~cm}^{2}
\end{aligned}
$$

4. Maya painted a tiger that was 12 inches high, and it used $1 / 2 \mathrm{oz}$ of paint. If she wants to enlarge her picture (proportionately) to make a mural 6 feet high, how much paint will she need? (this one is extra tricky)

$$
12 \text { aches }=1 f t \underset{x 6}{\longrightarrow} 6 f t
$$

Amount of paint needed is proportional to area

$$
\frac{1}{2} \times 6^{2}=180 z
$$

5. Figure out the side lengths and find each of these perimeters. Show your work in a neat, easy to follow way (assume a $1-\mathrm{cm}$ grid size).


$$
2=c^{2}
$$

$$
\sqrt{2}=c
$$

$$
P=2+4+\sqrt{13}+2+\sqrt{2}+3+\sqrt{2}
$$

$$
=11+\sqrt{13}+2 \sqrt{2} \mathrm{~cm} .
$$

6. Find the areas of the shapes in \#5

$\Delta: \frac{1}{2} \cdot 1 \cdot 1=\frac{1}{2} \quad \Delta \div \frac{1}{2} \cdot 1 \cdot 1=\frac{1}{2}$


$$
\frac{1}{2} \cdot 2 \cdot 3=3
$$

$$
A=\frac{1}{2}+\frac{1}{2}+3+6+3=13 \mathrm{~cm}^{2}
$$



$$
\begin{array}{ll}
4^{2}+2^{2}=a^{2} & 1^{2}+2^{2}=b^{2} \\
16+4=a^{2} & 1+4=b^{2} \\
20=a^{2} & 5=b^{2} \\
a=\sqrt{20} & b=\sqrt{5} \\
P=3+5+3+\sqrt{5}+\sqrt{20} \\
= & 11+\sqrt{5}+\sqrt{20} \mathrm{~cm} \leftarrow 4 \text { CK final } \\
=11+\sqrt{5}+2 \sqrt{5}=11+3 \sqrt{5} \mathrm{~cm}
\end{array}
$$



$$
A=5+15=20 \mathrm{~cm}^{2}
$$

7. Draw the heights that correspond to the bold base in these triangles:

8. For the word problems below:

- Draw a bar diagram (or similar ba diagram)
- Solve the problem by multiplying and dividing by whole numbers
- Write a fraction multiplication expression for the solution
a. In a bag of $M \& M s$ there are $3 / 5$ as many red $\mathrm{M} \& \mathrm{Ms}$ as green M\&Ms. There are 15 red M\&Ms. How many green $\mathrm{M} \& \mathrm{Ms}$ are there? 15


$$
\begin{aligned}
& 15 \div 3=5 \\
& 5 \times 5=25 \text { green } \\
& 15 \times \frac{1}{3} \times 5=15 \times \frac{5}{3}
\end{aligned}
$$

b. In a bag of $M \& M s$ there are $3 / 5$ as many red M\&Ms as green M\&Ms. There are 15 green M\&Ms. How many red M\&Ms are there?

green


$$
\begin{aligned}
& 15 \div 5=3 \\
& 3 \times 3=9 \text { reds } \\
& 15 \times \frac{1}{5} \times 3=15 \times \frac{3}{5}
\end{aligned}
$$

c. Mike has $3 / 4$ of a quart of juice. Jane has $3 / 5$ as much juice as Mike. How much juice does Jane have?


$$
\begin{aligned}
& \frac{3}{4} \div 5=\frac{3}{4} \times \frac{1}{5}=\frac{3}{20} \\
& \frac{3}{20} \times 3=\frac{9}{20} q^{2}=\frac{3}{4} \times \frac{3}{5}
\end{aligned}
$$

d. Jane has $3 / 4$ of a quart of juice. Jane has $3 / 5$ as much juice as Mike. How much juice does Mike have?

9. Explain (using a diagram) how to simplify $12 / 15$

Groups shaded


$$
\frac{12}{15}=\frac{12 \div 3}{15 \div 3}=\frac{4}{5} \leqslant \text { groups in whole }
$$ divide both 12 and 15 by 3: make groups of 3

(T) TD $(10)(I T)(11)$
10. For the problem: $\frac{7}{8}-\frac{2}{3}$
a. Write a word problem
b. Show how to solve it with a diagram
c. Show how to solve it with a numerical algorithm
d. Explain how the diagram work matches the number work.
a. Jack had $7 / 8$ of a quart of paint. He used $2 / 3$ of a quart of paint to paint his book shelf. How much paint does he have left?

had

used

Shared $\frac{7}{8}-\frac{2}{3}=$

whole $\uparrow$ $\uparrow$ $\frac{1}{8}$ into 3 pieces $\frac{1}{3}$ into 8 pieces
11. For the problem: $1 \frac{3}{8} \times \frac{3}{4}$
a. Write a word problem
b. Show how to solve it with a diagram
c. Show how to solve it with a numerical algorithm
d. Explain how the diagram work matches the number work.

A bag of nuts has $13 / 8 \mathbf{l b s}$ of nuts in it. How much is in $3 / 4$ of a bag?


$$
1 \frac{3}{8}=\frac{11}{8}
$$

$$
\begin{aligned}
& 1 \frac{3}{8} \text { in a set (bag) } \\
& \frac{3}{4} \operatorname{set}(5) \\
& =\text { total (product }
\end{aligned}
$$

$$
\text { across } x \text { down }
$$

$$
1 \frac{3}{8} \times \frac{3}{4}=\frac{11}{8} \times \frac{3}{4}=\frac{11 \times 3}{8 \times 4}
$$

parts in 1 lb across $x$ down

$$
=\frac{33}{32} \mathrm{lbs}
$$

12. For the problem: $1 \frac{3}{8} \div \frac{2}{3}$
a. Write a word problem
b. Show how to solve it with a diagram
c. Show how to solve it with a numerical algorithm
d. Explain how the diagram work matches the number work.

A partition division answer

I have $13 / 8$ cups of ice cream. It fills my bowl $2 / 3$ of the way full. How much ice cream can a full bowl hold?
$13 / 8$ is the amount I have. It fits evenly into $2 / 3$ of a bowl (number of sets). How much is in 1 bowl (set)?


$$
\begin{gathered}
\text { Amt total (distributed) } \\
\text { shared }
\end{gathered}
$$

- I ( $f_{u} l l$ ) bowl

$$
\text { diagram solution: } \frac{11 \times 3^{2}}{8 \times{ }^{2} \text { amt in bops }=\frac{33}{16} \text { cups }}
$$

numerical solution
show
all of the

$$
\frac{1}{8} 1 s
$$

The labels show how numbers and diagram
match
12. For the problem: $1 \frac{3}{8} \div \frac{2}{3}$
a. Write a word problem
b. Show how to solve it with a diagram
c. Show how to solve it with a numerical algorithm
d. Explain how the diagram work matches the number work.

A measurement division answer

I have $13 / 8$ cups of sugar. I have sugar bowls that hold $2 / 3$ cups of sugar. How many sugar bowls can I fill?
$13 / 8$ is the total amount I start with. I make groups of size $2 / 3$. I want to know how many groups.


