Some more practice questions:

1. Which equation matches each question (note, some equations may be used twice, and others not at an	1.	Which equation	n matches each	question (note,	some equations m	ay be used twice	, and others not at all)
---	----	----------------	----------------	-----------------	------------------	------------------	-------------------------	---

1. A men equation matches each question (note; some equations may be used twice; an	a ouners not at any
a. A full box of crackers holds $5/4$ lb of crackers. How many lbs of crackers is in	i. $\frac{5}{-+-}$
2/3 of a box of crackers?	4 3
	ii. $\frac{5}{4} - \frac{2}{2}$
b. A full box of crackers holds 5/4 lb of crackers. If my friends eat 2/3 of the box,	4 5
how many lbs of crackers be left?	iii. $\frac{1}{4} \times \frac{1}{3} = \frac{1}{3} \times \frac{1}{4}$
c. A full box of crackers holds 5/4 lb of crackers. If my friends eat 2/3 lb of	
crackers, how many lbs of crackers will be left?	iv. $\frac{5}{4} \div \frac{2}{2}$
d A full box of crackers holds $5/4$ lb of crackers. How many lbs of crackers is in 4	4 3 2 5
boxes of crackers?	v. $\frac{2}{3} \div \frac{3}{4}$
	5 5
e. A full box of crackers holds 5/4 lb of crackers. If I have 4 lbs of crackers, how many boxes is that?	V1. $4 \times -= -\times 4$ 4 4
	vii. $4 \div \frac{5}{-}$
f. A full box of crackers holds 5/4 lb of crackers. If I have 2/3 lbs of crackers, how	4
many boxes is that?	viii. $\frac{3}{4} \div 4$
g. A full box of crackers holds 5/4 lb of crackers. If I have a box of crackers and	. 5 (5 2)
another 2/3 of a box of crackers, how many lbs of crackers do I have?	$1X+ \left(\frac{-\times -}{4}\right)$
h. A full box of crackers holds 5/4 lb of crackers. If I have a box of crackers and	$\frac{5}{5} - \left(\frac{5}{5} \times \frac{2}{2}\right)$
another 2/3 lbs of crackers, how many lbs of crackers do I have?	$4 (4^3)$
1. A blue box of crackers holds 5/4 lb of crackers. A red box of crackers holds 2/3 lbs of crackers. How many more lbs of crackers are in a blue box than a red box	
j. A blue box of crackers holds 5/4 lbs of crackers. A red box holds 2/3 as much as a	
blue box. How many more crackers are in a blue box than a red box?	

2. The question was: *How many bowls can you fill, if each bowl holds 2/3 cups of soup and you have 3 1/2 cups of soup?*

D_0	ug c	110:			
7	. 2 _	_ 21	4	_ 21 _	-5^{1}
$\overline{2}$	3	6	6	4	$\frac{-5}{4}$

Who is correct? What does the 1/4 mean in Doug's solution? (What is it 1/4 of) What does the 1/6 mean in Evan's solution? (what is it 1/6 of)

3. For the problem: Kelly had 5/6 of a cup of sugar. She used 3/4 of it to make a cake. How much sugar did she put in the cake?

a. Fill in the blanks to make an interpretation of the problem: _____ of a set of size _____.

b. Draw a diagram to solve the problem.

c. Write a number sentence to solve the problem.

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Be prepared for problems like:

4. Write a word problem for:

a. $\frac{5}{4} + \frac{2}{3}$ b&c. $\frac{5}{4} - \frac{2}{3}$ (take away or compare) d. $\frac{5}{4} \times \frac{2}{3}$ e. $4 \times \frac{5}{4}$ f. $\frac{5}{4} \times 4$ g. $\frac{5}{4} \div \frac{2}{3}$

5. Solve a word problem using a diagram (especially multiplication or division)

6. Explain a numerical solution from a diagram (standard multiplication algorithm or common denominator division algorithm)

Some answers: 1a. iii. b. x. c. ii. d. vi e. vii f. v. g. ix h. i. i. ii. j. x.

2. Doug's answer is more correct without additional labelling: you can fill 5 1/4 bowls of soup: 1/4 represents 1/4 of a bowl of soup. The 1/6 in Evan's solution means there are 5 bowls of soup and 1/6 of a cup of soup left over.

3. For the problem: Kelly had 5/6 of a cup of sugar. She used 3/4 of it to make a cake. How much sugar did she put in the cake?

a. Fill in the blanks to make an interpretation of the problem: 3/4 of a set of size 5/6.

b. Draw a diagram to solve the problem. c. Write a number sentence to solve the problem.

3	<u>5</u>	_3×5_	_ 15 _	_ 5
4	$\frac{1}{6}$	$\overline{4 \times 6}$	$-\frac{1}{24}$	8

d. Use the diagram to explain the multiplications in the number sentence algorithm (numerator and denominator)

Each of the 6ths in a whole cup is split into 4 parts, so there are 4×6 parts in the whole (denominator) In each of the 5 sixths that are shaded, 3 of the 4 parts are shaded again: 3 across and 5 down, so 3×5 parts are double shaded in the answer (numerator).

6. Division. For a division problem that is paraphrased as "how many 2/5 are in 1 1/3" a diagram might look like:

In order to put 2/5 and 1 1/3 on the same number line, and get them in the right place, I had to make 15ths—a common denominator—and find the equivalent fractions with the common denominator:

$$\frac{2}{5} = \frac{2 \times 3}{5 \times 3} = \frac{6}{15}$$
 and $1\frac{1}{3} = \frac{4 \times 5}{3 \times 5} = \frac{20}{15}$

After I did that, I could make sets of $\frac{2}{5} = \frac{6}{15}$ grouping the 20 small parts in 20/15 into groups of 6: which is 20 ÷ 6. Then I have 3 sets and 2 fifteenth-sized parts left over, which is 2/6 of a set (6 make a whole set): $1\frac{1}{3} \div \frac{2}{5} = \frac{20}{15} \div \frac{6}{15} = 20 \div 6 = \frac{20}{6} = 3\frac{2}{6} = 3\frac{1}{3}$