The procedure we're following for these problems is to:

- organize the information and put it in a table, organized by units
- look at the table by units, and make a bar or a number line for the unit that you know two numbers for. If one of the two known numbers is 1 , use a bar diagram. If neither of the known numbers is 1 , find a common denominator and use number lines.
- add the information for the other unit into the diagram, and solve either with a second number line or by multiplying by appropriate unit fractions and whole numbers.

1. A can holds $12 / 3$ cups of tomato sauce. How much tomato sauce is in $11 / 4$ cans?

1 can $=12 / 3$ cups	$12 / 3$ cups	? cups
? cups $=11 / 4$ cans	1 can	$11 / 4$ cans

To find \square

$$
12 / 3 \div 4=\frac{5}{3} \times \frac{1}{4}=\frac{5}{12} c .
$$

$$
\text { To find ?: } \frac{5}{12} \times 5=\frac{25}{12}=2 \frac{12}{12} \mathrm{c} \text {. }
$$

2. I have $3 / 4$ liters of soda. That's $2 / 3$ of a serving. How much soda is in one serving?

have $3 / 4$ l.	$3 / 4$ l.	? l.
$3 / 4$ l. $=2 / 3$ serv	$2 / 3$ serv	1 serv.
$?$ l. $=1$ serv		

$$
\begin{aligned}
& \text { To find } \square: \\
& 3 / 4 \div 2=\frac{3}{4} \times \frac{1}{2}=3 / 8 \text { li } \\
& \text { To find ?: } 3 / 8 \times 3=9 / 8 \mathrm{li} \\
& =1 \frac{1}{8} \mathrm{li} .
\end{aligned}
$$

3. I have $25 / 6$ cups of pancake mix. A batch takes $11 / 4$ cups of mix. How many batches of pancakes can I make?

4. I have $22 / 3$ yards of string. That's enough to go around the table $11 / 2$ times. How many yards of string do I need to go around the table once?

I have $22 / 3$ yards.	$22 / 3$ yd	? yd
$22 / 3$ yards = $11 / 2$ tables	$11 / 2$ table	1 table
$?$? yards = 1 table		

To find ?: $\frac{8}{9} \times 2=\frac{16}{9} 4 d$.

$$
=17 / 9 y d .
$$

5. A tube of paint holds $11 / 3$ ounces. How much paint is in $2 / 3$ of a tube of paint?

To find :

$$
1 \frac{1}{3} \div 3=\frac{4}{3} \times \frac{1}{3}=\frac{4}{9} 6 t
$$

To find?: $\frac{4}{9} \times 2=\frac{8}{9} o z$
6. I have $2 / 3$ cups of soda. A serving is $3 / 4$ cup. How many servings do I have?

7. I have $21 / 2$ yards of fabric. It takes $2 / 3$ yard of fabric to make a cub scout flag. How many flags can I make?

$0=1 / 6 y^{d}, 1 / 4$ flog
8. A bag of candy weighs $11 / 2 \mathrm{lbs}$. How much does $3 / 5$ of a bag of candy weigh?

$1 \mathrm{bag}=11 / 2 \mathrm{lbs}$	$11 / 2 \mathrm{lbs}$? lbs
? lbs $=3 / 5 \mathrm{bag}$	1 bag	$3 / 5 \mathrm{bag}$

$$
\begin{aligned}
& \square=1 \frac{1}{2} \div 5=\frac{3}{2} \times \frac{1}{5}= \\
& ?=\frac{3}{10} \times 3=\frac{9}{10} 1 b
\end{aligned}
$$

9. I have $21 / 3$ cups of water. That fills the jar $5 / 8$ of the way full. How much water would it take to fill the jar?

$$
\begin{aligned}
& =2 \frac{1}{3} \div 5 \\
& =\frac{7}{3} \times \frac{1}{5}=\frac{7}{15} \\
& ?=\frac{7}{15} \times 8=\frac{56}{15}=3 \frac{11}{15} \mathrm{c} .
\end{aligned}
$$

10. A bottle has $2 / 3$ of a quart of juice in it. How much juice is in $21 / 5$ bottles?

11. I have $21 / 2$ ounces of dye. It takes $3 / 5$ ounce of dye to dye 1 yard of fabric. How many yards of fabric can I dye?

12. I have $21 / 4$ pounds of apples. That's enough to make $13 / 5$ jars of applesauce. How many apples do I need for 1 jar of applesauce?

$$
\begin{aligned}
& \square=2 \frac{1}{4} \div 8=\frac{9}{4} \times \frac{1}{8}=\frac{9}{32} \\
& 2=\frac{9}{32} \times 5=\frac{35}{32}=1 \frac{3}{32} 1 \mathrm{bs}
\end{aligned}
$$

13. Alice solved the problem:

Jan has 20 ounces of dried thyme. If a package of thyme weighs $3 / 4$ of an ounce, how many packages of thyme can Jan make?
by dividing: $20 \div \frac{3}{4}=20 \times \frac{4}{3}=\frac{80}{3}=26 \frac{2}{3}$
What does 26 tell about the answer? What does $2 / 3$ tell about the answer?
She can make 26 full packages, and fill another package $2 / 3$ of the way full.
14. John solved the problem $\frac{5}{4} \div \frac{1}{3}$ by drawing the following diagram:

John says that this means that the answer is $31 / 4$. Is he correct? If not, what is the correct answer, and how does it fit with his picture?
If this were a word problem, then the answer could be 3 with $1 / 4$ of a unit left over. Since this isn't a word problem, his answer isn't correct: there are 3 groups of $1 / 3$ and $3 / 4$ of another group (each group has 4 small parts in it), so the answer should be 3 3/4.

