5.) Can we get every possible line through the intersection point by using linear combinations of R_{1} and R_{2} for the specific example we did in class?

$$
\left\{\begin{array}{c}
2 x+y=1 \\
x-y=5
\end{array}\right.
$$

$$
a * R_{1}+b * R_{2}
$$

This is a generic linear combination

$$
a(2 x+y)+b(x-y)=a+5 b
$$

$(2 a+b) x+(a-b) y=(a+5 b)$
$y=-\frac{2 a+b}{a-b} x+(a+5 b)$
\therefore slope $=m=-\frac{2 a+b}{a-b}=\frac{2 a+b}{b-a} \quad$ Note: $a, b \in \mathbb{R}$; at least one of a or $b \neq 0 ; a \neq b$ We don't want to let both a and b be 0 or we get $0=0$. If $a=b$ then the slope m is undefined. If you let $a=b$ and simplify the linear combination equation you get $x=2$ which is the vertical line through the point of intersection
We will verify that $m=\frac{2 a+b}{b-a}$ can take on any real number by showing that $2 a+b$ and $b-a$ are independent of each other.

If we let c be any constant and let $b-a=c$, then $b=a+c$
By substitution $m=\frac{2 a+b}{b-a}=\frac{2 a+a+c}{c}=\frac{3 a+c}{c}=\frac{3 a}{c}+1$.
For instance, if you let $c=3$, then you get $m=a+1$ and then it's easy to see that you can get any real number by choosing the right value for a.

This shows that denominator $b-a$ is independent of the numerator $2 a+b$ allowing us to verify that $m=\frac{2 a+b}{b-a}$ can take on any real number, furthermore verifying that we can get every possible line through the intersection point $(2,-3)$.

