Projections

- projecting evenly spaced points will stay evenly spaced.

Why is the projection of

$$
\hat{\imath}+\hat{\jmath}=a+b ?
$$

What is the length of the projection of a vector? The length of projection of \hat{c} onto $(4 / 5,3 / 5)$ is $4 / 5$. $\hat{\jmath}$ onto $(4 / 5,3 / 5)$ is $3 / 5$.

$$
\begin{aligned}
&(1,0) \cdot(4 / 5,3 / 5)=4 / 5+0=4 / 5 \\
&(0,1) \cdot(4 / 5,3 / 5)=0+3 / 5=3 / 5 \\
&(3,4)=3 \hat{\imath}+4 \hat{\jmath} \rightarrow \text { project onto } \vec{u} \\
& 3(4 / 5)+4(3 / 5)=24 / 5 \text { same as dot product } \\
&(3,4) \cdot(4 / 5,3 / 5)=\left[\begin{array}{ll}
3 & 4
\end{array}\right][4 / 5]
\end{aligned}
$$

Project onto $2 \vec{u}$?
You would project then scale.

ex

$$
\begin{array}{r}
(2,3) \cdot(4 / 5,3 / 5)-2 \cdot 4 / 5+3 \cdot 3 / 5 \\
9 / 5+9 / 5=17 / 5
\end{array}
$$

The length $=17 / 5$

$$
\begin{aligned}
& x=17 / 5 \cdot 4 / 5=68 / 25 \quad(60 / 25,51 / 25) \\
& y=17 / 53 / 5=51 / 25
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { unit } \\
\text { vector }
\end{array}\left(\begin{array}{l}
12 / 13,5 / 13) \cdot(5,20) \\
60 / 13+100 / 13=160 / 13=\text { length }
\end{array}\right. \\
& \quad x=160 / 13 \cdot 12 / 13=1920 / 169 \quad\left(\frac{1920}{169}, \frac{800}{169}\right) \\
& \quad y=160 / 13 \cdot 5 / 13=800 / 169
\end{aligned}
$$

Project $\vec{\omega}$ onto $\vec{v}: \operatorname{proj}_{v}(\omega)$

$$
\text { length }(-\underbrace{\left(\frac{\vec{v}}{|\overrightarrow{\mid}|}\right) \cdot \vec{w}}_{\text {scaler }}) \frac{\vec{v}}{|\vec{v}|}
$$

same as $\left(\frac{\vec{v} \cdot \vec{\omega}}{|\vec{v}|}\right) \frac{\vec{v}}{|\vec{v}|}$

$$
=\frac{(\vec{v} \cdot \vec{w}) \vec{v}}{|\vec{v}|^{2}}=\frac{(\vec{v} \cdot \vec{\omega}) \vec{v}}{(\vec{v} \cdot \vec{v})}
$$

$$
\text { ex } \begin{aligned}
|\vec{v}|^{2} & ={\sqrt{12^{2}+5^{2}}}^{2} \\
\vec{v}^{2} & =12^{2}+5^{2} \\
& =12 \cdot 12+5 \cdot 5=(\vec{v} \cdot \vec{v})
\end{aligned}
$$

