$\{\vec{u}, \vec{v}\}$ is a basis for \mathbb{R}^{2}

$$
\left.\begin{aligned}
& a \cdot \vec{u}+b \vec{v}=\hat{L}^{\prime} \kappa_{\hat{u}^{\prime} \text { using to }}^{\text {can }+\vec{v}}+\hat{\jmath}^{\prime} \\
& a\left[\begin{array}{l}
2 \\
1
\end{array}\right]+b\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& {\left[\left.\begin{array}{ll}
2 & 3
\end{array} \right\rvert\,\right.} \\
& 1 \\
& 1
\end{aligned} \right\rvert\,
$$

$$
c \vec{u}+d \vec{v}=\hat{\jmath}^{\prime}
$$

$$
c\left[\begin{array}{l}
1 \\
1
\end{array}\right]+d\left[\begin{array}{l}
3 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{cc|c}
2 & 3 & 0 \\
1 & -1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc|cc}
a / c & b / d & \imath^{\prime} & \hat{\jmath}^{\prime} \\
2 & 3 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{cc|cc}
1 & 0 & 1 / 5 & 3 / 5 \\
0 & 1 & 1 / 5 & -2 / 5
\end{array}\right]_{d}^{c}
$$

$$
1 / 5\left[\begin{array}{l}
2 \\
1
\end{array}\right]+1 / 5\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
3 / 5\left[\begin{array}{c}
2 \\
1
\end{array}\right]+-2 / 5\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

point is $(1 / 5,1 / 5)$
to get to $(1,0)$
point is $(3 / 5,-2 / 5)$ to get to $(0,1)$
inverse is $\left[\begin{array}{cc}1 / 5 & 3 / 5 \\ 1 / 5 & -2 / 5\end{array}\right]$

