Sierpinski triangle/gasket
rule: connect the midpoints and erase the middle

$$
\lim _{n \rightarrow \infty} r^{n}=\infty \quad \quad \lim _{n \rightarrow \infty} r^{n}=0
$$

Geometric series $a=$ first term, common $\underset{\text { rato }}{ } r$
has n terms

$$
\begin{aligned}
& \text { as } n \text { terms } \\
& \begin{array}{c}
S=\frac{a-a r^{n}}{1-r}=\frac{3 / 2-\frac{3}{2}(3 / 2)^{n}}{1-3 / 2} \\
=\frac{3 / 2(1-3 / 2)^{n}}{-1 / 2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{3}{8}\left(1-\left(\frac{3}{2}\right)^{n}\right) \\
& =-3+\left(\frac{3}{2}\right)^{n} \cdot 3
\end{aligned}
$$

