Homework on similarity, geometric series, and the size of a self-similar fractal.

Similarity problems:

1. Are all of these triangle similar? Are any of these triangles similar? Tell how you know:

2. Jack climbed up the bean stalk, and went into the giant's house. The giant's height is 4 x Jack's height. If everything in the giant's house is proportional (geometrically similar) to things in Jack's house, answer the following questions:
a. If Jack's tabletop is 8 square feet, what is the area of the giant's table top?
b. If the circumference of Jack's plate is 2 ft , what is the circumference of the giant's plate?
c. If Jack's mug holds 1 cup of water, how much water can the giant's mug hold?
d. If Jack weighs 100 lbs , how much does the giant weigh (assume Jack and the giant are also similar in shape, and have the same density)?
3. I have two similar (proportional) pictures of a moon and star. The larger picture was enlarged to 200% on a standard copy machine from the smaller one:
a. If the area of the smaller star is $5 \mathrm{~cm}^{2}$, what is the area of the larger star?
b. If the area of the larger moon is $48 \mathrm{~cm}^{2}$, what is the area of the smaller moon?

Geometric series problem:

4. Explain the proof of the geometric series formula illustrated by this diagram by explaining:
a. How do we know that one straight line goes through all of the top-left corners of the squares?
b. What two similar triangles are we using? How do we know they are similar (hint: use angles)?
c. What similar triangle ratio can we use to find the sum of the infinite series: $1+r+r^{2}+r^{3}+\ldots$

Self-similar fractal problems:

5. A square version of a Sierpinski triangle is a Sierpinski carpet:

Rule: subdivide each square into 9 smaller squares and erase the middle one.

a. Find the formula for the total area of an iteration n Sierpinski carpet. Use the formula to show that in the limit the area is 0 . You should assume that the area of an iteration 0 carpet is 1 S (S for square area), and make a helpful table.
b. Find the formula for the total length of the "perimeter" of an iteration n Sierpinski carpet. Use the formula to show that the limit of the length is infinite. You should assume that the length of a side of the iteration 0 square is 1 u (u is for unit), make a helpful table.

Note: this one is more complicated than the Sierpinski triangle, and I had to use the geometric series formula to get a formula. The " 4 " from the iteration 0 square doesn't really fit nicely with the rest of it, so your formula will (unless you are more clever than me) be $4+$ (geometric series). Also the pattern probably won't be clear until you have something written down for each of the iterations 1-3.

Note the finite geometric series formula (which you will need to use for the n -th term is: $S=\frac{a-a r^{n}}{1-r}$ where a is the first term of the geometric series, r is the common ratio and n is the number of terms. Its limit is $\frac{a}{1-r}$ when $r<1$ and its limit is infinite when $\mathrm{r}>1$

