An easy-puzzle example:

If you know that a polyhedron has faces that are :

- 8 triangles
- 2 squares
- 4 pentagons

How many edges and vertices does it have?
First find the number of faces: $8+2+4=14$ faces
Next find the number of edges on each face, and divide by 2 (because we are double counting total edges:
$E=\frac{8 \Delta+2 \square+4[\text { pentagon }]}{2}=\frac{8 \cdot 3+2 \cdot 4+4 \cdot 5}{2}=\frac{52}{2}=26$
Now use the Euler characteristic of a polyhedron to say:
$V-E+F=2$
$V=E+2-F=26+2-14=14$

