Concurrency Assignment 1: Prove each of these lemmas (easiest to hardest, I think)

Lemma 1: Given segment \overline{AB} , a point C lies on the perpendicular bisector of \overline{AB} if and only if it is equidistant from points A and B.

Lemma 2: Given angle $\angle ABC$, a point *D* lies on the angle bisector of $\angle ABC$ if and only if the distance from *D* to \overrightarrow{AB} is equal to the distance from *D* to \overrightarrow{BC}

Lemma 3: Given triangle $\triangle ABC$, if you construct lines parallel to each side going through the opposite vertex, that will create a large triangle that is split into four smaller triangles, one of which is $\triangle ABC$, and each of the smaller triangles are congruent to $\triangle ABC$. (Note: if you prove that $\triangle ABC$ is congruent to one of the other three triangles using what you are given by the construction, you are allowed to say that "similarly" $\triangle ABC$ is congruent to the other two without showing all of the steps)

Lemma 4a: Given triangle $\triangle ABC$, with point *D* on side \overline{BC} , then $\frac{area(\triangle ADC)}{area(\triangle ABC)} = \frac{DC}{BC}$

Lemma 4b: Given triangle $\triangle ABC$, with *M* being the midpoint of side \overline{AC} and *N* being the midpoint of side \overline{BC} , and $P = \overline{BM} \cap \overline{AN}$ then $(PM) = \frac{1}{3}(BM)$

Hints on the next page. Waltkthrough videos online.

Hints

Lemma 1: Part 1: assume C is on the perpendicular bisector (which is the line which intersects \overline{AB} at its midpoint, and is perpendicular to \overline{AB}). Draw in the segments from C to A and B.

Part 2: assume C has the same distance to A and B. Draw in the segments from C to A and B. Draw in the segment from C to the midpoint of \overline{AB} . Try to prove that segment is also perpendicular to \overline{AB}

Lemma 2:

- Part 1: assume D is on the angle bisector (which is the ray that splits the angle into two equal angles).
- Construct a segment from D to \overrightarrow{BA} that is perpendicular to \overrightarrow{BA} , and a segment from D to \overrightarrow{BC} that is perpendicular to \overrightarrow{BC} : the lengths of those segments are the distances from D to \overrightarrow{BA} and \overrightarrow{BC} .
- Look for congruent triangles to help you prove that those segments have equal lengths.
- Part 2: Construct a segment from D to \overrightarrow{BA} that is perpendicular to \overrightarrow{BA} , and a segment from D to \overrightarrow{BC} that is perpendicular to \overrightarrow{BC} : the lengths of those segments are the distances from D to \overrightarrow{BA} and \overrightarrow{BC} .
- You are given, in this part, that those lengths are equal.
- Draw in the ray \overrightarrow{BD} or line \overleftarrow{BD} . try to prove that \overleftarrow{BD} bisects the angle.

Lemma 3: When you draw your triangle $\triangle ABC$, make sure that you draw a scalene triangle: if you draw an isosceles triangle, it will be much harder to sort out what angles and sides are congruent.

Lemma 4a:

- Draw your triangle with \overline{AC} on the bottom, and use it as the base when you calculate the areas of both triangles.
- You will need to draw in some altitudes to show the height (one for each triangle).
- Use those altitudes together with the segments \overline{BC} and \overline{DC} to make two new triangles. Those new triangles are similar triangles.
- Use similar triangle properties

Lemma 4b:

- Draw a scalene triangle
- Draw your triangle with \overline{AC} on the bottom, and construct an altitude from B.
- Look for triangles that have equal areas
- Draw a segment from P to C

- Prove that the triangles ABM and MBC have equal areas (note: the triangles are not congruent)
- Draw an altitude from P to \overrightarrow{AC}
- Triangles APM and MPC also have equal areas
- Turn your page so it looks like \overline{BC} is the base
- Draw an altitude from A to \overrightarrow{BC}
- Which triangles have equal areas when you look from this perspective?
- Draw another altitude from P
- Name some variables to be the areas of the small triangles that you see in your picture (there should be 5 of them)
- Write down some equations about equal areas.
- Can you find the ratio of areas between triangles APM and ABM?
- If you draw out just the part of your picture that has ABM and APM, does it look anything like lemma 4a?
- Use lemma 4a.