Concurrency Assignment 1: Prove each of these lemmas (easiest to hardest, I think)
Lemma 1: Given segment $\overline{A B}$, a point C lies on the perpendicular bisector of $\overline{A B}$ if and only if it is equidistant from points A and B.

Lemma 2: Given angle $\angle A B C$, a point D lies on the angle bisector of $\angle A B C$ if and only if the distance from D to $\overleftrightarrow{A B}$ is equal to the distance from D to $\overleftrightarrow{B C}$

Lemma 3: Given triangle $\triangle A B C$, if you construct lines parallel to each side going through the opposite vertex, that will create a large triangle that is split into four smaller triangles, one of which is $\triangle A B C$, and each of the smaller triangles are congruent to $\triangle A B C$. (Note: if you prove that $\triangle A B C$ is congruent to one of the other three triangles using what you are given by the construction, you are allowed to say that "similarly" $\triangle A B C$ is congruent to the other two without showing all of the steps)

Lemma 4a: Given triangle $\triangle A B C$, with point D on side $\overline{B C}$, then $\frac{\operatorname{area}(\triangle A D C)}{\operatorname{area}(\triangle A B C)}=\frac{D C}{B C}$

Lemma 4b: Given triangle $\triangle A B C$, with M being the midpoint of side $\overline{A C}$ and N being the midpoint of side $\overline{B C}$, and $P=\overline{B M} \cap \overline{A N}$ then $(P M)=\frac{1}{3}(B M)$

Hints on the next page. Waltkthrough videos online.

Hints

Lemma 1: Part 1: assume C is on the perpendicular bisector (which is the line which intersects $\overline{A B}$ at its midpoint, and is perpendicular to $\overline{A B}$). Draw in the segments from C to A and B .

Part 2: assume C has the same distance to A and B . Draw in the segments from C to A and B . Draw in the segment from C to the midpoint of $\overline{A B}$. Try to prove that segment is also perpendicular to $\overline{A B}$

Lemma 2:

- Part 1: assume D is on the angle bisector (which is the ray that splits the angle into two equal angles).
- Construct a segment from D to $\overleftrightarrow{B A}$ that is perpendicular to $\overleftrightarrow{B A}$, and a segment from D to $\overleftrightarrow{B C}$ that is perpendicular to $\overleftrightarrow{B C}$: the lengths of those segments are the distances from D to $\overleftrightarrow{B A}$ and $\overleftrightarrow{B C}$.
- Look for congruent triangles to help you prove that those segments have equal lengths.
- Part 2: Construct a segment from D to $\overleftrightarrow{B A}$ that is perpendicular to $\overleftrightarrow{B A}$, and a segment from D to $\overleftrightarrow{B C}$ that is perpendicular to $\overleftrightarrow{B C}$: the lengths of those segments are the distances from D to $\overparen{B A}$ and $\overleftrightarrow{B C}$.
- You are given, in this part, that those lengths are equal.
- Draw in the ray $\overrightarrow{B D}$ or line $\overrightarrow{B D}$. try to prove that $\overleftrightarrow{B D}$ bisects the angle.

Lemma 3: When you draw your triangle $\triangle A B C$, make sure that you draw a scalene triangle: if you draw an isosceles triangle, it will be much harder to sort out what angles and sides are congruent.

Lemma 4a:

- Draw your triangle with $\overline{A C}$ on the bottom, and use it as the base when you calculate the areas of both triangles.
- You will need to draw in some altitudes to show the height (one for each triangle).
- Use those altitudes together with the segments $\overline{B C}$ and $\overline{D C}$ to make two new triangles. Those new triangles are similar triangles.
- Use similar triangle properties

Lemma 4b:

- Draw a scalene triangle
- Draw your triangle with $\overline{A C}$ on the bottom, and construct an altitude from B .
- Look for triangles that have equal areas
- Draw a segment from P to C
- Prove that the triangles ABM and MBC have equal areas (note: the triangles are not congruent)
- Draw an altitude from P to $\overrightarrow{A C}$
- Triangles APM and MPC also have equal areas
- Turn your page so it looks like $\overline{B C}$ is the base
- Draw an altitude from A to $\overleftrightarrow{B C}$
- Which triangles have equal areas when you look from this perspective?
- Draw another altitude from P
- Name some variables to be the areas of the small triangles that you see in your picture (there should be 5 of them)
- Write down some equations about equal areas.
- Can you find the ratio of areas between triangles APM and ABM?
- If you draw out just the part of your picture that has ABM and APM, does it look anything like lemma 4 a ?
- Use lemma 4a.

