Geometry examples (what we did in class March $5^{\text {th }}$):

2. Show that a right triangle has area $(1 / 2) b h$ by using rectangles

- Show that a right triangle whose base is one of the legs has area $(1 / 2) b h$ by constructing a rectangle that contains the triangle (and shares two sides with the legs of the triangle)
- Prove that the rectangle consists of two congruent triangles (one of which is the original triangle.
- Note/show that the base and height of the triangle are the same as the length and width of the rectangle
- Note that the area of the triangle is half of the area of the rectangle (which is bh)

Start with a right triangle with base $\overline{A B}$ that is one of the legs of the triangle.
Note that then the length of the base is $A B$ and the length of the height is $B C$

Construct a rectangle that contains it by:

- constructing a line perpendicular to $\overline{A B}$ at A, and
- a line perpendicular to $\overline{B C}$ at C.
- Name the intersection of these lines D

Because the sum of angles in a quadrilateral is $360^{\circ}\left(^{*}\right)$, and the angles of quadrilateral $A B C D$ at A, B, and C are 90°, we know that the angle at D is also 90°

Thus $A B C D$ is a rectangle, and so we know its area is $(A B)(B C)$
Also, because $A B C D$ is a rectangle, we know that $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D}\left({ }^{*}\right)$
Thus $\triangle A B C \cong \triangle C D A$
That means area $\triangle A B C=$ area $\triangle C D A$
We also know that area $\triangle A B C+\operatorname{area} \triangle C D A=\operatorname{area} A B C D=(A B)(B C)$
So (using algebra), we get that $\operatorname{area} \triangle A B C=\frac{1}{2}(A B)(B C)=\frac{1}{2} b h$
(* these theorems will be added to the sheet)
3. Use (2) and subtraction to show that a triangle with a specific property has area (1/2)bh.

- Start with a triangle with an identified base where the altitude to that base lies inside the triangle.
- Construct a rectangle where one side is the base of the triangle, and where the opposite vertex lies on the opposite side of the rectangle.
- Note that the area of the rectangle consists of the original triangle area and the area of the two right triangles.
- Use algebra to write down (rectangle area)-(right triangle 1 area) - (right triangle 2 area) and simplify it to $(1 / 2) b h$.

To start, we have a triangle $\triangle A B C$ with base $\overline{A B}$ that has length b, and altitude $\overline{C D}$ whose length h is the height.

Now construct a rectangle around it by constructing:

- a line perpendicular to $\overline{A B}$ through point A,
- a line perpendicular to $\overline{A B}$ through point B, and
- a line parallel to $\overline{A B}$ through point C
- name the intersection points E (adjacent to $A)$ and $F($ adjacent to $B)$

Then the angles are E and F are right angles because of a parallel lines theorem (AIA or similar), so $A B F E$ is a rectangle.

Additionally, the altitude at C is perpendicular to $\overline{A B}$, and because of parallel lines, we also know that it is perpendicular to $\overline{E F}$.
Thus, $A D C E$ and $D B F C$ are rectangles, and so all of the side lengths $B F, C D$ and $A E$ are equal to the height h.
We know the area of rectangle $A B F E$ is $b h$,
Using the result from problem 2, we can calculate the area of right triangles, so we know:
area $\triangle C E A=\frac{1}{2}(C E) h$ and we know $\operatorname{area} \triangle C F B=\frac{1}{2}(C F) h$

We also know that the area of the rectangle is the sum of the areas of the three triangles:

$$
\begin{aligned}
& \text { area } A B F D=\text { area } \triangle C E A+\text { area } \triangle C F B+\text { area } \triangle A B C \\
& b h \quad=\frac{1}{2}(C E) h+\frac{1}{2}(C F) h+\text { area } \triangle A B C \\
& b h \quad=\frac{1}{2}(C E+C F) h+\text { area } \triangle A B C \\
& b h=\frac{1}{2} b h+\text { area } \triangle A B C \\
& b h-\frac{1}{2} b h=\text { area } \triangle A B C \\
& \frac{1}{2} b h=\text { area } \triangle A B C
\end{aligned}
$$

Right here, we are again using that opposite sides of a rectangle have equal length so

$$
C E+C F=E F=A B=b
$$

