1. Given a ring, R, that has a multiplicative identity, prove the product of two units in R is a unit.

Warning: we don't know R is commutative.
Hint: Look at theorem 4, and go look at the video solution to 7.4 \#
Second warning: theorem 4 is a useful hint, but this is a problem about rings, not groups, so you can't just say it's true by theorem 4.
Second hint: you can, however, prove it in exactly the same way we proved theorem 4 (just check the inverse conditions)
2. a. Calculate the inverses for the following matrices:
$A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 4 \\ 4 & 5\end{array}\right]$
b. Calculate $A B$ and $A^{-1} B^{-1}$
c. Multiply $(A B)\left(A^{-1} B^{-1}\right)$. Are these matrices ($A B$ and $A^{-1} B^{-1}$) inverse matrices? If not, what should you do instead to get the inverse of $A B$ (using the technique from problem1 on this assignment)
3. Prove: *Theorem 43 Any element a of a ring R can't be both a unit and a zero divisor.

Hint: this should be done as a proof by contradiction. Further hints are on the next page if you need them.
4. Prove the statement in 3.2 \#21 b: If $a \in R$ is non-zero and is not a zero-divisor, prove that cancellation on the right holds for a. This means that if $b a=c a$ then $b=c$ (see videos for the process for this)
5. Prove that if $1<a<n$ and $a \mid n$ and $a b \neq 0$ in \mathbb{Z}_{n}, then $a b$ is a zero divisor in \mathbb{Z}_{n}.

Note that the condition $1<a<n$ and $a \mid n$ and $a b \neq 0$ in \mathbb{Z}_{n} is equivalent to saying that

$$
1<\operatorname{gcd}(a b, n)<n
$$

Hints below/on the next page

6. Using the results you proved in problems 4 and 5 , for each equation, tell whether it is safe to cancel the common factor:
a. $2 x=2 \cdot 3$ in \mathbb{Z}_{8}
b. $6 x=6 \cdot 3$ in \mathbb{Z}_{8}
c. $3 x=3 \cdot 2$ in \mathbb{Z}_{8}
d. $2 x=2 \cdot 3$ in \mathbb{Z}_{9}
e. $3 x=3 \cdot 2$ in \mathbb{Z}_{9}
yes: this implies $x=3$
yes: this implies $x=3$
yes: this implies $x=2$
yes: this implies $x=3$
yes: this implies $x=2$
no: does not imply $x=3$ (more solutions possible)
no: does not imply $x=3$ (more solutions possible)
no: does not imply $x=2$ (more solutions possible)
no: does not imply $x=3$ (more solutions possible)
no: does not imply $x=2$ (more solutions possible)

Hint-through for \#3:

- Suppose that a is both a unit and a zero divisor
- Using the zero-divisor definition, name an element to multiply with a and get 0 . Be sure to write down the condition that neither factor is equal to 0 .
- Using the unit condition, name an element to be the multiplicative inverse of a.
- You now have three different elements. Multiply them together so that a is the middle of the three factors.
- Use the associative law to group on the left, and then multiply: what do you get?
- Use the associative law to group on the right and then multiply: what do you get?
- This means two things are equal: what are they? Explain why that's a contradiction.
- Conclude that a can't be both a unit and a zero divisor.

Hint through for \#5:

- $\quad a \mid n$ means that you can write down an equation with a, n, and another integer. Name the third integer, and write down the equation.
- Notice that $n=0$ in \mathbb{Z}_{n}. Use that to simplify your equation from the previous step as an equation in \mathbb{Z}_{n}
- You named an integer in the first step. What happens when you multiply that integer by $a b$?
- Your previous equation should have proved that $a b$ is a zero divisor in \mathbb{Z}_{n}

