Images and kernels Some Theorems and some Homework 1. *Fill in the missing line of the proof*

Prove: Theorem 75: If *R* and *S* are rings, and $f: R \to S$ is a ring homomorphism, then $f(0_R) = 0_S$ where 0_R is the additive identity in *R*, and 0_S is the additive identity in *S*.

Proof: $0_R + 0_R = 0_R$ So $f(0_R + 0_R) = f(0_R)$ because *f* is a well defined function. And $f(0_R + 0_R) = f(0_R) + f(0_R)$ because ______ So $f(0_R) + f(0_R) = f(0_R)$ So $f(0_R) + f(0_R) + (-f(0_R)) = f(0_R) + (-f(0_R))$ because *S* is a ring and elements in *S* have additive inverses. Thus $f(0_R) + 0_S = 0_S$, and therefore $f(0_R) = 0_S$

2. Fill in the missing lines in the proof

Thus_____, and therefore $f(1_R) = 1_S$

3. Fill in the missing line of the proof

Prove Theorem 77: If R and S are rings, and $f: R \to S$ is a ring homomorphism and $a \in R$, then f(-a) = -f(a)

Proof: $a + -a = 0_R$ So, $f(a + -a) = f(0_R)$ And ______ because f is a homomorphism So $f(a) + f(-a) = f(0_R)$ And $f(a) + f(-a) = 0_S$ by theorem 75 So $-f(a) + f(a) + f(-a) = -f(a) + 0_S$ And $0_S + f(-a) = -f(a)$ Therefore f(-a) = -f(a) 4. Proving Theorem 53/78: If R and S are rings, and f: R → S is a ring homomorphism, then f(R) = {f(x) | x ∈ R} ⊆ S is a subring of S.
Proof:
 first: show that f(R) is closed under addition
Let f(a), (b) ∈ f(R)
then a, b ∈ R
and f(a) + f(b) = f(a+b) because f is a homomorphism,
and a+b ∈ R, so f(a+b) ∈ f(R)
So f(a) + f(b) ∈ f(R)

second: show has f(R) additive inverses

Let $f(a) \in R$

then $a \in R$ and therefore $-a \in R$, so $f(-a) \in f(R)$ by theorem 77, we know f(-a) = -f(a), so $-f(a) \in f(R)$ *third: show* f(R) *is closed under multiplication*

```
Finish the proof of theorem 53/78 by doing the third part:
show f(R) is closed under multiplication
```

5. Proving Theorem 79: If *R* and *S* are rings, and $f: R \to S$ is a ring homomorphism, then $ker(f) \subseteq R$ is an ideal in *R*.

Proof:

first: prove ker(f) is closed under addition Let $a, b \in \text{ker}(f)$ then f(a) = f(b) = 0And f(a+b) = f(a) + f(b) because f is a homomorphism Therefore f(a+b) = f(a) + f(b) = 0 + 0 = 0so $a+b \in \text{ker}(f)$ second: prove ker(f) includes additive inverses Let $a \in \text{ker}(f)$ $-a \in R$ and f(-a) = -f(a) by theorem 77 So f(-a) = -f(a) = -0 = 0Therefore $-a \in \text{ker}(f)$ Finish the proof of theorem 79 by showing the third part: prove that ker(f) multiplicatively absorbs elements of R 6. Proving Theorem 80 (First Isomorphism Theorem): If *R* and *S* are rings, and $f: R \to S$ is a surjective (onto) ring homomorphism, then $R/\ker(f) \cong S$ with isomorphism $\phi(r + \ker(f)) = f(r)$ where $r + \ker(f) \in R/(\ker(f))$

Proof: First show ϕ *is a well-defined function:* Suppose $r + \ker(f)$, $s + \ker(f) \in R / \ker(f)$ such that $r + \ker(f) = s + \ker(f)$ then $s - r = i \in \text{ker}(f)$ So f(s-r) = f(s) + f(-r) = f(s) + -f(r) because f is a homomorphism but also f(s-r) = f(i) = 0So f(s) - f(r) = 0And thus f(s) = f(r)Therefore $\phi(s + \ker(f)) = f(s) = f(r) = \phi(r + \ker(f))$ and hence, f is a well-defined function Second, show ϕ is onto: Let $s \in S$ Then, because f is surjective, there exists an $r \in R$ such that f(r) = sNow $r + \ker(f) \in R / \ker(f)$ and $\phi(r + \ker(f)) = f(r) = s$ so ϕ is onto. *Third, show* ϕ *is one-to-one* Let $r + \ker(f)$, $s + \ker(f) \in R / \ker(f)$ such that $\phi(r + \ker(f)) = \phi(s + \ker(f))$ Then f(r) = f(s)So f(r) - f(s) = 0But f(r) - f(s) = f(r) + f(-s) = f(r + -s) = f(r - s)So f(r-s) = 0And by definition, $r - s \in \text{ker}(f)$ And therefore $r \equiv s \pmod{ker(f)}$ so $r + \ker(f) = s + \ker(f)$ And therefore, ϕ is one=to-one. Fourth show ϕ preserves addition: Let $r + \ker(f)$, $s + \ker(f) \in R / \ker(f)$ Then $\phi((r + \ker(f)) + (s + \ker(f))) = \phi((r + s) + \ker(f)) = f(r + s)$ And $\phi(r + \ker(f)) + \phi(s + \ker(f)) = f(r) + f(s)$ and f is a homomorphism, so f(r+s) = f(r) + f(s)Therefore (by the transitive property) $\phi((r + \ker(f)) + (s + \ker(f))) = \phi(r + \ker(f)) + \phi(s + \ker(f))$ So ϕ preserves addition. Fourth show ϕ preserves multiplication: $\phi((r + \ker(f)) \cdot (s + \ker(f))) = \phi((r \cdot s) + \ker(f)) = f(r \cdot s)$ And $\phi(r + \ker(f)) \cdot \phi(s + \ker(f)) = f(r) \cdot f(s)$ and f is a homomorphism, so $f(r \cdot s) = f(r) \cdot f(s)$ Therefore (by the transitive property) $\phi((r + \ker(f)) \cdot (s + \ker(f))) = \phi(r + \ker(f)) \cdot \phi(s + \ker(f))$ So ϕ preserves multiplication.

7. Proving Theorem 81: If $f(x) \in F[x]$ is an irreducible polynomial with coefficients in the field *F*, then F[x]/(f(x)) is a field.

By theorem 74, we already know that F[x]/(f(x)) is a ring.

Commutativity:

Because *F* is a field, it is commutative, and since *x* by definition commutes with every element of *F*, we can conclude that F[x] is commutative.

To simplify the notation, we will use the notation $[g]_f = g(x) + (f(x)) \in F[x] / (f(x))$ for any

By theorem 73, if $[g]_f[h]_f \in F[x]/(f(x))$, then $[g]_f \cdot [h]_f = [g \cdot h]_f$ Using commutativity of F[x], $[g]_f \cdot [h]_f = [g \cdot h]_f = [h \cdot g]_f = [h]_f \cdot [g]_f$ Thus F[x]/(f(x)) is a commutative ring.

Multiplicative identity:

F has a multiplicative identity 1, and that identity will also be the multiplicative identity for F[x]

Let $[g]_f = g(x) + (f(x)) \in F[x] / (f(x))$, then

 $[g]_f \cdot [1]_f = [g \cdot 1]_f = [g]_f = [1 \cdot g]_f = [1]_f \cdot [g]_f$

so $[1]_f = 1 + (f(x))$ is the multiplicative identity for F[x]/(f(x))

All non-zero elements are units

Let $[g]_f = g(x) + (f(x)) \in F[x]/(f(x))$, such that $[g]_f \neq [0]_f$, which means $g(x) \notin (f(x))$ and f(x)/g(x)Then g(x) and f(x) have a greatest common divisor, d(x) in F[x], and by theorem 58, there exist polynomials $u(x), v(x) \in F[x]$ such that d(x) = u(x)f(x) + v(x)g(x)Now, d(x) is a divisor of f(x), and because f(x) is irreducible, then either d(x) = 1, or d(x) is an associate of f(x)

Suppose d(x) is an associate of f(x)Then $d(x) = c \cdot f(x)$ where $c \in F$ and $c \neq 0$ But $d(x) = c \cdot f(x)$ is also a divisor of g(x), which means that f(x) | g(x), but this contradicts $[g]_f \neq [0]_f$ Therefore, d(x) = 1Thus we get 1 = u(x)f(x) + v(x)g(x)and $u(x)f(x) \in (f(x))$ Therefore $v(x)g(x) = 1 + u(x)f(x) \in 1 + (f(x)) = [1]_f$ And hence $[v]_f \cdot [g]_f = [1]_f$

Therefore, $[g]_f$ is a unit, and F[x]/(f(x)) is a field.

9. Proving Theorem 82: If $f(x) \in F[x]$ is an irreducible polynomial with coefficients in a field *F* such that $\mathbb{Q} \subseteq F \subseteq \mathbb{C}$, and $\alpha \in \mathbb{C}$ such that $f(\alpha) = 0$ then $\phi: F[x]/(f(x)) \to F(\alpha)$ defined by $\phi(g(x) + (f(x))) = g(\alpha)$ is an isomorphism and $F[x]/(f(x)) \cong F(\alpha)$.

Proof:

We will begin by defining a function $\psi: F[x] \to F(\alpha)$ such that $\psi(g(x)) = g(\alpha)$

Note that for any $g(x) \in F[x]$, the number $g(\alpha)$ is computed by adding, subtracting and multiplying elements in $F(\alpha)$ (which is a field that contains α and the elements of F), so $g(\alpha) \in F(\alpha)$ (so ψ is a well defined function).

Let $g(x), h(x) \in F[x]$ Then $\psi(g(x) + h(x)) = g(\alpha) + h(\alpha) = \psi(g(x)) + \psi(h(x))$ And $\psi(g(x) \cdot h(x)) = g(\alpha) \cdot h(\alpha) = \psi(g(x)) \cdot \psi(h(x))$ So ψ is a homomorphism

Let $K = \psi(F[x]) \subseteq F(\alpha)$ be the range of ψ

Then, by the first isomorphism theorem, $F[x]/\ker(\psi) \cong K$, where $\phi(g(x) + \ker(\psi)) = \psi(g(x)) = g(\alpha)$ is the isomorphism. (1)

Next, we will show that $\ker(\psi) = (f(x))$: We know $\psi(f(x)) = f(\alpha) = 0$, so $f(x) \in \ker(\psi)$ Also, if $h(x)f(x) \in (f(x))$, then $\psi(h(x)f(x)) = h(\alpha)f(\alpha) = h(\alpha) \cdot 0 = 0$, so $(f(x)) \subseteq \ker(\psi)$ Let $g(x) \in \ker(\psi)$, so $\psi(g(x)) = g(\alpha) = 0$ Then g(x) and f(x) have a greatest common divisor, d(x) in F[x], and by theorem 58, there exist polynomials $u(x), v(x) \in F[x]$ such that d(x) = u(x)f(x) + v(x)g(x) (2) Now, d(x) is a divisor of f(x), and because f(x) is irreducible, then either d(x) is a non-zero constant, or d(x) is an associate of f(x)We can substitute in α into (2) to get $d(\alpha) = u(\alpha)f(\alpha) + v(\alpha)g(\alpha) = u(\alpha) \cdot 0 + v(\alpha) \cdot 0 = 0$, so d(x) cannot be a non-zero constant. Therefore $d(x) = c \cdot f(x)$ where $c \in F$ and $c \neq 0$

We know that d(x) | g(x), so f(x) | g(x), so $g(x) \in (f(x))$

Therefore $\ker(\psi) \subseteq (f(x))$ and hence $(f(x)) = \ker(\psi)$

Substituting into (1), we have that $F[x]/(f(x)) \cong K$ where the isomorphism is $\phi(g(x)+(f(x))) = g(\alpha)$ (3) By theorem 53/78, we know that *K* is a ring. Because $\mathbb{Q} \subseteq F \subseteq K \subseteq \mathbb{C}$, we know that *K* is commutative and contains a multiplicative identity.

Let $a \in K$ such that $a \neq 0$, then $a = \psi(g(x)) = g(\alpha)$ for some $g(x) \in F[x]$ $g(\alpha) \neq 0$ so $g(x) \notin \ker(\psi) = (f(x))$, so $[g]_f = g(x) + (f(x))$ is a non-zero element of F[x]/(f(x))By theorem 77, we know that F[x]/(f(x)) is a field, so $[g]_f \neq [0]_f$, has a multiplicative inverse $[h]_f \in F[x]/(f(x))$ such that $[g]_f[h]_f = 1_f$ ϕ is a homomorphism, so $\phi([g]_f[h]_f) = \phi([1]_f) = 1 \in K$ and $\phi([g]_f \cdot [h]_f) = \phi([g]_f) \cdot \phi([h]_f) = g(\alpha)h(\alpha) = a \cdot h(\alpha)$ $h(\alpha) \in K$ and $a \cdot h(\alpha) = 1$, so *a* has a multiplicative inverse in *K*. Therefore every non-zero element of *K* has a multiplicative inverse, and *K* is a field. Note that if $a \in F$, then $\psi(a) = a \in K$, so $F \subseteq K$ Also note that $\psi(x) = \alpha \in K$ So *K* is a field that includes *F* and includes α and $K = \psi(F[x]) \subseteq F(\alpha)$

But $F(\alpha)$ is defined to be the smallest subfield of \mathbb{C} that contains both F and α , so $F(\alpha) = K$

Finally, substituting into (3), we conclude that $F[x]/(f(x)) \cong F(\alpha)$