Images and kernels Some Theorems and some Homework 1. Fill in the missing line of the progf

Prove: Theorem 75: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism, then $f\left(0_{R}\right)=0_{S}$ where 0_{R} is the additive identity in R, and 0_{S} is the additive identity in S.
Proof: $0_{R}+0_{R}=0_{R}$
So $f\left(0_{R}+0_{R}\right)=f\left(0_{R}\right)$ because f is a well defined function;
And $f\left(0_{R}+0_{R}\right)=f\left(0_{R}\right)+f\left(0_{R}\right) \cdot$ because \qquad
So $f\left(0_{R}\right)+f\left(0_{R}\right)=f\left(0_{R}\right)$
So $f\left(0_{R}\right)+f\left(0_{R}\right)+\left(-f\left(0_{R}\right)\right)=f\left(0_{R}\right)+\left(-f\left(0_{R}\right)\right)$ because S is a ring and elements in S have additive inverses.
Thus $f\left(0_{R}\right)+0_{S}=0_{S}$, and therefore $f\left(0_{R}\right)=0_{S}$

2. Fill in the missing lines in the pro日f

Prove Theorem 76: If R is a ring that has a multiplicative identity 1_{R}, and S is a field whose multiplicative identity is 1_{S}, and $f: R \rightarrow S$ is a ring homomorphism and there is some $a \in R$ such that $f(a) \neq 0$, then $f\left(1_{R}\right)=1_{S}$
Proof: $a \cdot 1_{R}=a$
So $f\left(a \cdot 1_{R}\right)=f(a)$
And \qquad because f is a homomorphism
So $f(a) \cdot f\left(1_{R}\right)=f(a)$
So $(f(a))^{-1} \cdot f(a) \cdot f\left(1_{R}\right)=(f(a))^{-1} \cdot f(a)$ because S is a \qquad and elements in S have -

Thus \qquad , and therefore $f\left(1_{R}\right)=1_{S}$

3. Fill in the missing line of the progf

Prove Theorem 77: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism and $a \in R$, then $f(-a)=-f(a)$

Proof: $a+-a=0_{R}$
So, $f(a+-a)=f\left(0_{R}\right)$
And \qquad because f is a homomorphism
So $f(a)+f(-a)=f\left(0_{R}\right)$
And $f(a)+f(-a)=0_{S}$ by theorem 75
So $-f(a)+f(a)+f(-a)=-f(a)+0_{S}$
And $0_{S}+f(-a)=-f(a)$
Therefore $f(-a)=-f(a)$
4. Proving Theorem 53/78: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism, then $f(R)=\{f(x) \mid x \in R\} \subseteq S$ is a subring of S.
Proof:
first: show that $f(R)$ is closed under addition
Let $f(a),(b) \in f(R)$
then $a, b \in R$
and $f(a)+f(b)=f(a+b)$ because f is a homomorphism,
and $a+b \in R$, so $f(a+b) \in f(R)$
So $f(a)+f(b) \in f(R)$
second: show has $f(R)$ additive inverses
Let $f(a) \in R$
then $a \in R$ and therefore $-a \in R$, so $f(-a) \in f(R)$
by theorem 77, we know $f(-a)=-f(a)$, so $-f(a) \in f(R)$
third: show $f(R)$ is closed under multiplication
Finish the proof of theorem 53/78 by doing the third part:
show $f(R)$ is closed under multiplication
5. Proving Theorem 79: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism, then $\operatorname{ker}(f) \subseteq R$ is an ideal in R.

Proof:
first: prove $\operatorname{ker}(f)$ is closed under addition
Let $a, b \in \operatorname{ker}(f)$
then $f(a)=f(b)=0$
And $f(a+b)=f(a)+f(b)$ because f is a homomorphism
Therefore $f(a+b)=f(a)+f(b)=0+0=0$
so $a+b \in \operatorname{ker}(f)$
second: prove $\operatorname{ker}(f)$ includes additive inverses
Let $a \in \operatorname{ker}(f)$
$-a \in R$ and $f(-a)=-f(a)$ by theorem 77
So $f(-a)=-f(a)=-0=0$
Therefore $-a \in \operatorname{ker}(f)$
Finish the proof of theorem 79 by showing the third part:
prove that $\operatorname{ker}(f)$ multiplicatively absorbs elements of R
6. Proving Theorem 80 (First Isomorphism Theorem): If R and S are rings, and $f: R \rightarrow S$ is a surjective (onto) ring homomorphism, then $R / \operatorname{ker}(f) \cong S$ with isomorphism $\phi(r+\operatorname{ker}(f))=f(r)$ where
$r+\operatorname{ker}(f) \in R /(\operatorname{ker}(f))$

Proof: First show ϕ is a well-defined function:
Suppose $r+\operatorname{ker}(f), s+\operatorname{ker}(f) \in R / \operatorname{ker}(f)$ such that $r+\operatorname{ker}(f)=s+\operatorname{ker}(f)$
then $s-r=i \in \operatorname{ker}(f)$
So $f(s-r)=f(s)+f(-r)=f(s)+-f(r)$ because f is a homomorphism
but also $f(s-r)=f(i)=0$
So $f(s)-f(r)=0$
And thus $f(s)=f(r)$
Therefore $\phi(s+\operatorname{ker}(f))=f(s)=f(r)=\phi(r+\operatorname{ker}(f))$
and hence, f is a well-defined function
Second, show ϕ is onto:
Let $s \in S$
Then, because f is surjective, there exists an $r \in R$ such that $f(r)=s$
Now $r+\operatorname{ker}(f) \in R / \operatorname{ker}(f)$
and $\phi(r+\operatorname{ker}(f))=f(r)=s$
so ϕ is onto.
Third, show ϕ is one-to-one
Let $r+\operatorname{ker}(f), s+\operatorname{ker}(f) \in R / \operatorname{ker}(f)$ such that $\phi(r+\operatorname{ker}(f))=\phi(s+\operatorname{ker}(f))$
Then $f(r)=f(s)$
So $f(r)-f(s)=0$
But $f(r)-f(s)=f(r)+f(-s)=f(r+-s)=f(r-s)$
So $f(r-s)=0$
And by definition, $r-s \in \operatorname{ker}(f)$
And therefore $r \equiv s \quad(\bmod \operatorname{ker}(f))$
so $r+\operatorname{ker}(f)=s+\operatorname{ker}(f)$
And therefore, ϕ is one=to-one.
Fourth show ϕ preserves addition:
Let $r+\operatorname{ker}(f), s+\operatorname{ker}(f) \in R / \operatorname{ker}(f)$
Then $\phi((r+\operatorname{ker}(f))+(s+\operatorname{ker}(f)))=\phi((r+s)+\operatorname{ker}(f))=f(r+s)$
And $\phi(r+\operatorname{ker}(f))+\phi(s+\operatorname{ker}(f))=f(r)+f(s)$
and f is a homomorphism, so $f(r+s)=f(r)+f(s)$
Therefore (by the transitive property) $\phi((r+\operatorname{ker}(f))+(s+\operatorname{ker}(f)))=\phi(r+\operatorname{ker}(f))+\phi(s+\operatorname{ker}(f))$
So ϕ preserves addition.
Fourth show ϕ preserves multiplication:
$\phi((r+\operatorname{ker}(f)) \cdot(s+\operatorname{ker}(f)))=\phi((r \cdot s)+\operatorname{ker}(f))=f(r \cdot s)$
And $\phi(r+\operatorname{ker}(f)) \cdot \phi(s+\operatorname{ker}(f))=f(r) \cdot f(s)$
and f is a homomorphism, so $f(r \cdot s)=f(r) \cdot f(s)$
Therefore (by the transitive property) $\phi((r+\operatorname{ker}(f)) \cdot(s+\operatorname{ker}(f)))=\phi(r+\operatorname{ker}(f)) \cdot \phi(s+\operatorname{ker}(f))$
So ϕ preserves multiplication.
7. Proving Theorem 81: If $f(x) \in F[x]$ is an irreducible polynomial with coefficients in the field F, then $F[x] /(f(x))$ is a field.

By theorem 74 , we already know that $F[x] /(f(x))$ is a ring.

Commutativity:

Because F is a field, it is commutative, and since x by definition commutes with every element of F, we can conclude that $F[x]$ is commutative.
To simplify the notation, we will use the notation $[g]_{f}=g(x)+(f(x)) \in F[x] /(f(x))$ for any
By theorem 73, if $[g]_{f}[h]_{f} \in F[x] /(f(x))$,
then $[g]_{f} \cdot[h]_{f}=[g \cdot h]_{f}$
Using commutativity of $F[x],[g]_{f} \cdot[h]_{f}=[g \cdot h]_{f}=[h \cdot g]_{f}=[h]_{f} \cdot[g]_{f}$
Thus $F[x] /(f(x))$ is a commutative ring.

Multiplicative identity:

F has a multiplicative identity 1 , and that identity will also be the multiplicative identity for $F[x]$
Let $[g]_{f}=g(x)+(f(x)) \in F[x] /(f(x))$, then
$[g]_{f} \cdot[1]_{f}=[g \cdot 1]_{f}=[g]_{f}=[1 \cdot g]_{f}=[1]_{f} \cdot[g]_{f}$
so $[1]_{f}=1+(f(x))$ is the multiplicative identity for $F[x] /(f(x))$

All non-zero elements are units

Let $[g]_{f}=g(x)+(f(x)) \in F[x] /(f(x))$, such that $[g]_{f} \neq[0]_{f}$, which means $g(x) \notin(f(x))$ and $f(x) / g(x)$ Then $g(x)$ and $f(x)$ have a greatest common divisor, $d(x)$ in $F[x]$, and by theorem 58, there exist polynomials $u(x), v(x) \in F[x]$ such that $d(x)=u(x) f(x)+v(x) g(x)$
Now, $d(x)$ is a divisor of $f(x)$, and because $f(x)$ is irreducible, then either $d(x)=1$, or $d(x)$ is an associate of $f(x)$

Suppose $d(x)$ is an associate of $f(x)$
Then $d(x)=c \cdot f(x)$ where $c \in F$ and $c \neq 0$
But $d(x)=c \cdot f(x)$ is also a divisor of $g(x)$, which means that $f(x) \mid g(x)$, but this contradicts $[g]_{f} \neq[0]_{f}$
Therefore, $d(x)=1$
Thus we get $1=u(x) f(x)+v(x) g(x)$
and $u(x) f(x) \in(f(x))$
Therefore $v(x) g(x)=1+u(x) f(x) \in 1+(f(x))=[1]_{f}$
And hence $[v]_{f} \cdot[g]_{f}=[1]_{f}$
Therefore, $[g]_{f}$ is a unit, and $F[x] /(f(x))$ is a field.
9. Proving Theorem 82: If $f(x) \in F[x]$ is an irreducible polynomial with coefficients in a field F such that $\mathbb{Q} \subseteq F \subseteq \mathbb{C}$, and $\alpha \in \mathbb{C}$ such that $f(\alpha)=0$ then $\phi: F[x] /(f(x)) \rightarrow F(\alpha)$ defined by $\phi(g(x)+(f(x)))=g(\alpha)$ is an isomorphism and $F[x] /(f(x)) \cong F(\alpha)$.

Proof:

We will begin by defining a function $\psi: F[x] \rightarrow F(\alpha)$ such that $\psi(g(x))=g(\alpha)$
Note that for any $g(x) \in F[x]$, the number $g(\alpha)$ is computed by adding, subtracting and multiplying elements in $F(\alpha)$ (which is a field that contains α and the elements of F), so $g(\alpha) \in F(\alpha)$ (so ψ is a well defined function).
Let $g(x), h(x) \in F[x]$
Then $\psi(g(x)+h(x))=g(\alpha)+h(\alpha)=\psi(g(x))+\psi(h(x))$
And $\psi(g(x) \cdot h(x))=g(\alpha) \cdot h(\alpha)=\psi(g(x)) \cdot \psi(h(x))$
So ψ is a homomorphism
Let $K=\psi(F[x]) \subseteq F(\alpha)$ be the range of ψ
Then, by the first isomorphism theorem, $F[x] / \operatorname{ker}(\psi) \cong K$, where $\phi(g(x)+\operatorname{ker}(\psi))=\psi(g(x))=g(\alpha)$ is the isomorphism.

Next, we will show that $\operatorname{ker}(\psi)=(f(x))$:
We know $\psi(f(x))=f(\alpha)=0$, so $f(x) \in \operatorname{ker}(\psi)$
Also, if $h(x) f(x) \in(f(x))$, then $\psi(h(x) f(x))=h(\alpha) f(\alpha)=h(\alpha) \cdot 0=0$, so $(f(x)) \subseteq \operatorname{ker}(\psi)$
Let $g(x) \in \operatorname{ker}(\psi)$, so $\psi(g(x))=g(\alpha)=0$
Then $g(x)$ and $f(x)$ have a greatest common divisor, $d(x)$ in $F[x]$, and by theorem 58 , there exist polynomials $u(x), v(x) \in F[x]$ such that $d(x)=u(x) f(x)+v(x) g(x)$
Now, $d(x)$ is a divisor of $f(x)$, and because $f(x)$ is irreducible, then either $d(x)$ is a non-zero constant, or $d(x)$ is an associate of $f(x)$
We can substitute in α into (2) to get $d(\alpha)=u(\alpha) f(\alpha)+v(\alpha) g(\alpha)=u(\alpha) \cdot 0+v(\alpha) \cdot 0=0$, so $d(x)$ cannot be a non-zero constant.
Therefore $d(x)=c \cdot f(x)$ where $c \in F$ and $c \neq 0$
We know that $d(x) \mid g(x)$, so $f(x) \mid g(x)$, so $g(x) \in(f(x))$
Therefore $\operatorname{ker}(\psi) \subseteq(f(x))$ and hence $(f(x))=\operatorname{ker}(\psi)$

Substituting into (1), we have that $F[x] /(f(x)) \cong K$ where the isomorphism is $\phi(g(x)+(f(x)))=g(\alpha)$ (3)
By theorem 53/78, we know that K is a ring. Because $\mathbb{Q} \subseteq F \subseteq K \subseteq \mathbb{C}$, we know that K is commutative and contains a multiplicative identity.
Let $a \in K$ such that $a \neq 0$, then $a=\psi(g(x))=g(\alpha)$ for some $g(x) \in F[x]$
$g(\alpha) \neq 0$ so $g(x) \notin \operatorname{ker}(\psi)=(f(x))$, so $[g]_{f}=g(x)+(f(x))$ is a non-zero element of $F[x] /(f(x))$
By theorem 77, we know that $F[x] /(f(x))$ is a field, so $[g]_{f} \neq[0]_{f}$, has a multiplicative inverse $[h]_{f} \in F[x] /(f(x))$ such that $[g]_{f}[h]_{f}=1_{f}$
ϕ is a homomorphism, so $\phi\left([g]_{f}[h]_{f}\right)=\phi\left([1]_{f}\right)=1 \in K$
and $\phi\left([g]_{f} \cdot[h]_{f}\right)=\phi\left([g]_{f}\right) \cdot \phi\left([h]_{f}\right)=g(\alpha) h(\alpha)=a \cdot h(\alpha)$
$h(\alpha) \in K$ and $a \cdot h(\alpha)=1$, so a has a multiplicative inverse in K.
Therefore every non-zero element of K has a multiplicative inverse, and K is a field.
Note that if $a \in F$, then $\psi(a)=a \in K$, so $F \subseteq K$
Also note that $\psi(x)=\alpha \in K$
So K is a field that includes F and includes α and $K=\psi(F[x]) \subseteq F(\alpha)$
But $F(\alpha)$ is defined to be the smallest subfield of \mathbb{C} that contains both F and α, so $F(\alpha)=K$

Finally, substituting into (3), we conclude that $F[x] /(f(x)) \cong F(\alpha)$

