
Images and kernels Some Theorems and some Homework 
1. Fill in the missing line of the proof 
Prove: Theorem 75: If R and S are rings, and :f R S  is a ring homomorphism, then (0 ) 0R Sf   where 0R is 

the additive identity in R, and 0S  is the additive identity in S. 

Proof: 0 0 0R R R   

So (0 0 ) (0 )R R Rf f   because f is a well defined function. 

And ) (0 ) (0 )(0 0R R R Rf f f    because        

So (0 ) (0 ) (0 )R R Rf f f   

So (0 ) (0 ) ( (0 (0 ) ( () 0) ))R R R R Rf f f f f       because S is a ring and elements in S have additive inverses. 

Thus (0 ) 00R S Sf   , and therefore (0 ) 0R Sf   

 
2. Fill in the missing lines in the proof 
Prove Theorem 76:  If R is a ring that has a multiplicative identity 1R , and S is a field whose multiplicative 

identity is 1S , and :f R S  is a ring homomorphism and there is some a R such that ( ) 0f a  , then 

(1 ) 1R Sf   

Proof:  1Ra a   

So ( 1 ) ( )Rf a f a   

And __________________________ because f is a homomorphism 
So ( ) (1 ) ( )Rf a f f a   

So    1 1
( ) ( ) (1 ) ( ) ( )Rf a f a f f a f a

      because S is a _________________and elements in S have -

________________________ 
 
Thus__________________, and therefore (1 ) 1R Sf   

 
3. Fill in the missing line of the proof 

Prove Theorem 77: If R and S are rings, and :f R S  is a ring homomorphism and a R , then 

( ) ( )f a f a     

Proof: 0Ra a    

So, )( ) (0Rf a a f    

And ____________________ because f is a homomorphism 
So ( ) ( ) (0 )Rf a f a f      

And ( ) ( ) 0Sf a f a     by theorem 75 

So ( ) ( ) ( ) ( ) 0Sf a f a f a f a        

And 0 ( ) ( )S f a f a     

Therefore ( ) ( )f a f a    

  



4. Proving Theorem 53/78: If R and S are rings, and :f R S  is a ring homomorphism, then 

( ( }) { ) | Sf R f x x R   is a subring of S. 

Proof:  
 first: show that ( )f R is closed under addition 

Let )( (), ( )f b fa R  

then ,a b R  

and ( ) ( ) ( )f a f b f a b    because f is a homomorphism, 

and a Rb  , so )( ) (Rf a b f   

So )( () ( )f f Rb fa    

 second: show has ( )f R  additive inverses 

Let ( )f a R  

then a R  and therefore a R  ,  so ( ) ( )f a f R   

by theorem 77, we know ( ) ( )f a f a   , so ) ( )(a f Rf   

 third: show ( )f R is closed under multiplication 

Finish the proof of theorem 53/78 by doing the third part:  
show ( )f R is closed under multiplication  

 
 
 
 
5. Proving Theorem 79:  If R and S are rings, and :f R S  is a ring homomorphism, then ker( )f R  is an 

ideal in R.  

Proof:  
 first: prove ker( )f is closed under addition 

Let ker( ),a b f  

then ( ) ( ) 0f a f b   

And ( ) ( ) ( )f a b f a f b    because f is a homomorphism 

Therefore ( ) ( ) ( ) 0 0 0f a b f a f b       

so ker( )fa b  

 second: prove ker( )f includes additive inverses 

Let ker( )a f  

Ra   and  ( ) ( )f a f a    by theorem 77 

So ( ) ( ) 0 0f a f a       

Therefore ker( )fa  

Finish the proof of theorem 79 by showing the third part:  
prove that ker( )f multiplicatively absorbs elements of R 

 
 
  



6. Proving Theorem 80 (First Isomorphism Theorem): If R and S are rings, and :f R S  is a surjective (onto) 

ring homomorphism, then / ker( ) SR f  with isomorphism ( ker( )) ( )r f f r    where 

eker( ) / (k r( ))Rr f f  

 
 Proof: First show ϕ is a well-defined function: 
Suppose ker( ), ker )/ er(( k)r Rs f ff    such that ker( ) ker( )r f s f    

then ker( )fs r i    

So ( ) ( ) ( ) ( ) ( )f s r f s f r f s f r        because f is a homomorphism 

but also ( ) ( ) 0f s r f i    

So ( ) ( ) 0f s f r   

And thus ( ) ( )f s f r  

Therefore ( ker( )) ( ) ( ) ( ker( ))s f f s f r r f       

and hence, f is a well-defined function 
Second, show ϕ is onto: 

Let s S  
Then, because f is surjective, there exists an r R such that ( )f r s  

Now / kerer( ) )k (r Rf f   

and ( ker( )) ( )r f f r s     

so ϕ is onto. 
 Third, show ϕ is one-to-one 
Let ker( ), ker )/ er(( k)r Rs f ff    such that ker( )) ker ))( ((r f s f     

Then ( ) ( )f r f s  

So ( ) ( ) 0f r f s   

But ( ) ( ) ( ) ( ) ( ) ( )f r f s f r f s f r s f r s         

So ( ) 0f r s   

And by definition, ker( )fr s  

And therefore (mod ker( ))r s f  

so ker( ) ker( )r f s f   

And therefore, ϕ is one=to-one. 
 Fourth show ϕ preserves addition: 
Let ker( ), ker )/ er(( k)r Rs f ff    

Then (( ker( )) ( ker( ))) (( ) ker( )) ( )r f s f r s f f r s          

And ( ker( )) ( ker( )) ( ) ( )r f s f f r f s       

and f is a homomorphism, so ( ) ( ) ( )f r s f r f s    

Therefore (by the transitive property) (( ker( )) ( ker( ))) ( ker( )) ( ker( ))r f s f r f s f          

So ϕ preserves addition. 
Fourth show ϕ preserves multiplication: 

(( ker( )) ( ker( ))) (( ) ker( )) ( )r f s f r s f f r s          

And ( ker( )) ( ker( )) ( ) ( )r f s f f r f s       

and f is a homomorphism, so ( ) ( ) ( )f r s f r f s    

Therefore (by the transitive property) (( ker( )) ( ker( ))) ( ker( )) ( ker( ))r f s f r f s f          

So ϕ preserves multiplication. 
 



7. Proving Theorem 81: If ]( [)f Fx x is an irreducible polynomial with coefficients in the field F, then 

[ ] / ( ( ))F x f x  is a field. 
 

By theorem 74, we already know that [ ] / ( ( ))F x f x  is a ring.   
 

Commutativity: 
Because F is a field, it is commutative, and since x by definition commutes with every element of F, we can 
conclude that [ ]F x  is commutative.  

To simplify the notation, we will use the notation    )[ ] ( ) ( ) [ ] / (f x F xg g x xf f    for any  

By theorem 73, if  )[ [] [ (] ] /f f Fg x fh x ,  

then [ ] [ ] [ ]f f fg h g h    

Using commutativity of [ ]F x , [ ] [ ] [ ] [ ] [ ] [ ]f f f f f fg h g h h g h g        

Thus [ ] / ( ( ))F x f x  is a commutative ring. 
 

Multiplicative identity: 
F has a multiplicative identity 1, and that identity will also be the multiplicative identity for [ ]F x   

Let    )[ ] ( ) ( ) [ ] / (f x F xg g x xf f   , then  

[ ] [1] [ 1] [ ] [1 ] [1] [ ]f f f f f f fg g g g g         

so  [1] 1 ( )f f x   is the multiplicative identity for [ ] / ( ( ))F x f x  
 

All non-zero elements are units 

Let    )[ ] ( ) ( ) [ ] / (f x F xg g x xf f   , such that [ ]] [0f fg  , which means  ( ) ( )g x f x  and ( ) |f x ( )g x  

Then ( )g x and ( )f x  have a greatest common divisor, ( )d x  in [ ]F x , and by theorem 58, there exist 

polynomials ( ), ) [ ](u x v x F x  such that ( ) ( ) ( ) ( ) ( )d x u x f x v x g x   

Now, ( )d x  is a divisor of ( )f x , and because ( )f x is irreducible, then either ( ) 1d x  , or ( )d x  is an associate 

of ( )f x  

Suppose ( )d x  is an associate of ( )f x  

Then ( ) ( )d x c f x   where c F and 0c   

But ( ) ( )d x c f x   is also a divisor of ( )g x , which means that ( ) | ( )f x g x , but this contradicts 

[ ]] [0f fg   

Therefore, ( ) 1d x    

Thus we get 1 ( ) ( ) ( ) ( )u x f x v x g x   

and  )( () ( )u f x fx x  

Therefore  ( 1 ( ) [1]( ) ( ) 1 ( ) ) fv f f xx g x u x x     

And hence [ ] [ ] [1]f f fv g    

Therefore, [ ] fg is a unit, and  [ ] / ( )F x f x  is a field. 

  



9. Proving Theorem 82: If ]( [)f Fx x  is an irreducible polynomial with coefficients in a field F such that 

F   , and    such that )( 0f   then )[ ] / ( ( )): (F x f x F   defined by   ( ) ( ) ( )g x f x g     

is an isomorphism and   )[ (] / ( )F f x Fx  . 

 
Proof: 

We will begin by defining a function : [ ] ( )F x F   such that ( ( )) ( )g x g   

Note that for any ]( [)g Fx x , the number )(g   is computed by adding, subtracting and multiplying elements 

in )(F   (which is a field that contains   and the elements of F ), so )( ) (g F   (so ψ is a well defined 

function). 
Let ]( [), ( )g h x Fx x  

Then ( ( ) ( )) ( ) ( ) ( ( )) ( ( ))g x h x g h g x h x          

And ( ( ) ( )) ( ) ( ) ( ( )) ( ( ))g x h x g h g x h x          

So ψ is a homomorphism 
Let ( [ ]) ( )F x FK    be the range of ψ 

Then, by the first isomorphism theorem, [ ] / ke )r( KF x   , where  ( ) ker( ) ( ( )) ( )g x g x g       is the 

isomorphism.             (1) 
 

Next, we will show that  ) ( )ker( f x  : 

We know ( ( )) ( ) 0f x f   , so ker( )( )f x   

Also, if  )( () ( )h f x fx x , then ( ( ) ( )) ( ) ( ) ( ) 0 0h x f x h f h       , so   ker( )( )f x   

Let ker( )( )g x  , so ( ( )) ( ) 0g x g    

Then ( )g x and ( )f x  have a greatest common divisor, ( )d x  in [ ]F x , and by theorem 58, there exist 

polynomials ( ), ) [ ](u x v x F x  such that ( ) ( ) ( ) ( ) ( )d x u x f x v x g x       (2) 

Now, ( )d x  is a divisor of ( )f x , and because ( )f x is irreducible, then either ( )d x  is a non-zero constant, or 

( )d x  is an associate of ( )f x  

We can substitute in α into (2) to get ( ) ( ) ( ) ( ) ( ) ( ) 0 ( ) 0 0d u f v g u v             , so ( )d x  cannot be a 

non-zero constant. 
Therefore ( ) ( )d x c f x   where c F and 0c   

We know that ( ) | ( )d x g x , so ( ) | ( )f x g x , so   )( ()g fx x  

Therefore  )ker( ) (f x   and hence   ker( )( )f x   

 

Substituting into (1), we have that  [ ] / ( ) KF x f x   where the isomorphism is   ( ) ( ) ( )g x f x g    (3) 

By theorem 53/78, we know that K is a ring.  Because KF    , we know that K is commutative and 

contains a multiplicative identity.  
Let a K  such that 0a  , then ( ( )) ( )g x ga    for some ]( [)g Fx x  

)( 0g    so  )( ) ker( ) (g x f x  , so  [ ] ( ) ( )fg g x f x   is a non-zero element of  [ ] / ( )F x f x  

By theorem 77, we know that [ ] / ( ( ))F x f x  is a field, so [ ]] [0f fg  , has a multiplicative inverse 

 )[ ]] [ / (f F x fh x  such that [ ] [ ] 1f f fg h   

  is a homomorphism, so ([ ] ([1[ ] ) ) 1]f f f Khg     



and ([ ] ([ ] ([ ] ) ( ) ( )[ ] ) ) ) (f f f fg g gh h h a h           

)(h K   and ( ) 1a h   , so a has a multiplicative inverse in K. 

Therefore every non-zero element of K has a multiplicative inverse, and K is a field. 
Note that if a F , then ( )a a K   , so F K  

Also note that ( )x K    

So K is a field that includes F and includes α and ( [ ]) ( )F x FK    

But )(F   is defined to be the smallest subfield of   that contains both F and α, so )(F K   

 

Finally, substituting into (3), we conclude that   )[ (] / ( )F f x Fx   

 

 

 

 


