Ring property assignment

1. Prove the following two theorems (these are exactly the same proofs we did for groups, so this is a review problem)
a. Theorem 39: The additive identity of a ring R is unique.
b. Theorem 41: For any element a of a ring R, the additive inverse of a is unique.

2. Fill in the missing steps to prove



Theorem 38: If  is a ring, and  then  
Proof:


Let  be a ring, let  and let 0 be the additive identity of R.


We know 

So						(multiply both sides of the equation by a on the left)

So						(use the distributive law)



The element  has an additive inverse: 

So						(add the additive inverse to both sides of the equation)


So 						(simplify by adding )


Therefore   


Similarly, 

3. Finish the proof of:



Theorem 45: If  then  and 
proof:


Let  be a ring, and let 

Because R, is closed, 

And because every element of R has an additive inverse in R, we know 

Because R, is closed, 

Consider 

so 

[bookmark: _GoBack]and   by the distributive property, and Theorem 38

so 

and 

therefore .


[next prove that ) in the same way]




4. Prove theorem 40.  Be careful: the only element you know has a multiplicative inverse is the identity itself, so you will need to use the hint: if there were two identities, what would their product be?

Theorem 40: The multiplicative identity of a ring with identity (R) is unique. (Hint: if there were two identities, what would their product be?)





5. Using properties of rings, and Theorem 45, and given is a ring, and , prove that is a subring of R. 
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