Ring property assignment

1. Prove the following two theorems (these are exactly the same proofs we did for groups, so this is a review problem)

a. Theorem 39: The additive identity of a ring *R* is unique.

b. Theorem 41: For any element a of a ring R, the additive inverse of a is unique.

2. Fill in the missing steps to prove **Theorem 38:** If $R, +, \cdot$ is a ring, and $a \in R$ then $a \cdot 0 = 0 \cdot a = 0$ Proof: Let $R, +, \cdot$ be a ring, let $a \in R$ and let 0 be the additive identity of R. We know 0 + 0 = 0(multiply both sides of the equation by *a* on the left) So So (use the distributive law) Every element $a \cdot 0$ has an additive inverse $-(a \cdot 0) \in R$ (add the additive inverse to both sides of the equation) So (simplify by adding $-(a \cdot 0) + a \cdot 0 = 0$) So Therefore $a \cdot 0 = 0$ Similarly, $0 \cdot a = 0$

3. Prove theorem 40. Be careful: the only element you know has a multiplicative inverse is the identity itself, so you will need to use the hint: if there were two identities, what would their product be?

Theorem 40: The multiplicative identity of a ring with identity (R) is unique. (Hint: if there were two identities, what would their product be?)