Principal ideals, cosets and congruence in a polynomial ring

$$x^2 - 2 \in \mathbb{Q}[x]$$

$$I = (x^2 - 2) = \{(x^2 - 2)p(x) \mid p(x) \in \mathbb{Q}[x]\}$$

is a principal ideal in $\mathbb{Q}[x]$

Congruence classes are cosets of *I*:

$$[2x+1] = 2x+1+I = \{2x+1+(x^2-2)p(x) \mid p(x) \in \mathbb{Q}[x]\}$$

 $cR = \{cr \mid r \in R\}$ is a **principal** ideal of *R*

 $a+I = \{a+i \mid i \in I\}$ is a **coset** (also called equivalence class)

Polynomials are congruent if: $f(x), g(x) \in \mathbb{Q}[x]$ $g(x) - f(x) \in I = (x^{2} - 2)$ $g(x) - f(x) = (x^{2} - 2)p(x)$ $x^{2} - 2|g(x) - f(x)$

The equivalence classes form a ring: $\mathbb{Q}[x]/(x^2-2) = \{f(x)+I \mid f(x) \in \mathbb{Q}[x]\}$ $= \{[f(x)] \mid f(x) \in \mathbb{Q}[x]\}$ *a* is congruent to *b* modulo *I* if $b+(-a) \in I$. We write $a \equiv b \pmod{I}$

The quotient ring of R **mod** I **is** $R / I = \{a + I \mid a \in R\}$