Principal ideals, cosets and congruence in a polynomial ring

$$
x^{2}-2 \in \mathbb{Q}[x]
$$

$I=\left(x^{2}-2\right)=\left\{\left(x^{2}-2\right) p(x) \mid p(x) \in \mathbb{Q}[x]\right\}$
is a principal ideal in $\mathbb{Q}[x]$

$$
c R=\{c r \mid r \in R\} \text { is a principal }
$$

$$
\text { ideal of } R
$$

Congruence classes are cosets of I :

$$
[2 x+1]=2 x+1+I=\left\{2 x+1+\left(x^{2}-2\right) p(x) \mid p(x) \in \mathbb{Q}[x]\right\}
$$

$$
a+I=\{a+i \mid i \in I\} \text { is a coset }
$$

(also called equivalence class)

Polynomials are congruent if:

$$
\begin{aligned}
& f(x), g(x) \in \mathbb{Q}[x] \\
& g(x)-f(x) \in I=\left(x^{2}-2\right) \\
& g(x)-f(x)=\left(x^{2}-2\right) p(x) \\
& x^{2}-2 \mid g(x)-f(x)
\end{aligned}
$$

The equivalence classes form a ring:

$$
\begin{aligned}
\mathbb{Q}[x] /\left(x^{2}-2\right) & =\{f(x)+I \mid f(x) \in \mathbb{Q}[x]\} \\
& =\{[f(x)] \mid f(x) \in \mathbb{Q}[x]\}
\end{aligned}
$$

The quotient ring of $\boldsymbol{R} \bmod \boldsymbol{I}$ is $R / I=\{a+I \mid a \in R\}$

