Abstract Algebra Definitions and Theorems

Definition A group is a set of elements G together with a binary operation \# that have the properties:

1. Closure: If $a, b \in G$ then $a \# b \in G$
2. Associativity: If $a, b, c \in G$ then $a \#(b \# c)=(a \# b) \# c$
3. Identity under \#: There is an element $e \in G$ such that if $a \in G$ then $a \# e=e \# a=a$
4. Inverses under \#: For each $a \in G$ there is an element $a^{-1} \in G$ such that $a \# a^{-1}=a^{-1} \# a=e$.

As a default, we will use multiplication as the group operation, in which case the above properties are written:

1. Closure: If $a, b \in G$ then $a b \in G$
2. Associativity: If $a, b, c \in G$ then $a(b c)=(a b) c$
3. Identity: There is an element $e \in G$ such that if $a \in G$ then $a e=e a=a$
4. Inverses: For each $a \in G$ there is an element $a^{-1} \in G$ such that $a a^{-1}=a^{-1} a=e$.

But don't use the commutative law unless it is an Abelian group!
Definition: a group G, with operation \# is an Abelian (commutative) group if for every $a, b \in G$ then $a \# b=b \# a$. The default operation symbol for an Abelian group is + .
*Theorem 1: Function composition is associative.
*Theorem 2: If G is a group, then the identity element e is unique.
Unique means that e is the only element of G that has the identity property (group: property 3)
*Theorem 3: If G is a group, then every element of G has a unique inverse.
*Theorem 4: If G is a group and $a, b \in G$ then $(a b)^{-1}=b^{-1} a^{-1}$
*Theorem 5: If G is a group and $a \in G$ then $\left(a^{-1}\right)^{-1}=a$
Definition If G is a group, and $H \subseteq G$ is a subset of G, such that H is a group, then H is a subgroup of G.

Theorem 6: If G is a group, and $H \subseteq G$ is a non-empty subset of G such that

1. H is closed: if $a, b \in H$ then $a b \in H$
2. The inverse of every element in H is also in H : If $a \in H$ then there is an element $a^{-1} \in H$ such that $a a^{-1}=a^{-1} a=e$
Then H is a subgroup of G.
prove theorem 6 by explaining why all 4 of the group properties must be true for H.

April 25, 2020
Well Ordering Axiom Every non-empty subset of the non-negative integers contains a smallest element.

Theorem 7: Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^{+}$(b is a positive integer), then there exist unique integers q, r such that $a=b q+r$ and $0 \leq r<b$

Definition: Let a and b be integers where not both are zero, then $d=\operatorname{gcd}(a, b)$ is the greatest common divisor of a and b, which means:

- $\quad d \mid a$ and $d \mid b$
- If $c \mid a$ and $c \mid b$ then $c \leq d$

Note: our textbook writes $(a, b)=\operatorname{gcd}(a, b)$
Theorem 8 (1.2): Let a and b be integers where not both are zero, and $d=\operatorname{gcd}(a, b)$. There exist $u, v \in \mathbb{Z}$ such that $d=a u+b v$
*Theorem 9 (1.3): Let a and b be integers where not both are zero, and $d=\operatorname{gcd}(a, b)$. Then if $c \mid a$ and $c \mid b$ then $c \mid d$
*Theorem 10 (1.4): Let $a, b, c \in \mathbb{Z}$ such that $a \mid b c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$
hint: consider $c \cdot 1=c(a u+b v)$
*Theorem 11: Let $a, b, c \in \mathbb{Z}$, and let $d=\operatorname{gcd}(a, b)$. Then $a x+b y=c$ has integer solutions if and only if $d \mid c$ (pg. 16 \# 24)

Definition: Let p be an integer such that $p \neq 0, \pm 1$, then p is prime means:
Given $b, c \in \mathbb{Z}$, if $p \mid b c$ then $p \mid b$ or $p \mid c$
Definition: Let p be an integer such that $p \neq 0, \pm 1$, then p is irreducible means the only divisors of p are ± 1 and $\pm p$
*Theorem 12: An integer p be an integer such that $p \neq 0, \pm 1$ is prime if and only of it is irreducible.
*Theorem 13 (1.6): Let p be a prime integer and let $p \mid a_{1} a_{2} \ldots a_{n}$ then p divides at least one of the factors a_{i}.

Theorem 14(1.7): Every integer n except $0, \pm 1$ is a product of primes.
Theorem 15 (Fundamental Theorem of Arithmetic, 1.8): If $n \in \mathbb{Z}$ and $n \neq 0, \pm 1$ then n is a product of primes, and the prime factorization is unique in the sense that if

$$
n=p_{1} p_{2} \ldots p_{r} \text { and } n=q_{1} q_{2} \ldots q_{s}
$$

such that all of the p_{i} and q_{j} are prime,
then $r=s$ and the q_{j} factors can be re-ordered such that $p_{i}= \pm q_{i}$
(We can use a permutation to write $f:\{1,2, \ldots s\} \rightarrow\{1,2, \ldots s\}$ is a permutation, and $p_{i}= \pm q_{f(i)}$)

April 25, 2020
Definition: Let a, b, n be integers, with $n>0$, then \boldsymbol{a} is congruent to \boldsymbol{b} modulo \boldsymbol{n} if $n \mid(b-a)$. This is most often written $a \equiv b(\bmod n)$. If it is clear from the context of the problem, that all numbers are to be considered $\bmod n$, you will sometimes see $a \equiv b$ or $a=b$.
*Theorem 16: Let a, b, n be integers, with $n>0$, then
a) $a \equiv a(\bmod n)$
b) If $a \equiv b(\bmod n)$ then $b \equiv a(\bmod n)$
c) If $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$

Definition: Let a, b, n be integers, with $n>0$, then the congruence class of \boldsymbol{a} modulo \boldsymbol{n} is the set of all integers congruent to a modulo n. Sometimes we write $[a]$ or $[a]_{n}$, and the equivalence class is defined to be $\{b \mid b \in \mathbb{Z}$ and $b \equiv a(\bmod n)\}$.

Theorem 17: $[a]_{n}=[c]_{n}$ if and only if $a \equiv c(\bmod n)$
*Theorem 18: If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ then
a) $a+c \equiv b+d(\bmod n)$
b) $a c \equiv b d(\bmod n)$

Definition: The set of all congruence classes modulo n is denoted \mathbb{Z}_{n}, which is called "Z-n" or the "integers mod n " or "mod n numbers". Elements of \mathbb{Z}_{n} are sometimes written as $[a]_{n}$ or $[a]$ but usually they are just written a. Each congruence class has a simplest form, which is the element of the equivalence class in the range $0 \leq a<n$. In most cases, you should give answers to questions in \mathbb{Z}_{n} in simplest form.

Definition: Two integers are relatively prime if their greatest common divisor is 1 .
*Theorem 19: The element $a \in \mathbb{Z}_{n}$ has a multiplicative inverse $b \in \mathbb{Z}_{n}$ if and only if a and n are relatively prime.
*Theorem 20: $\mathbb{Z}_{n},+$ is a group (under addition)
Definition: The set of elements of \mathbb{Z}_{n} that have multiplicative inverses is called U_{n}. In set notation: $U_{n}=\left\{a \in \mathbb{Z}_{n} \mid a b=1\right.$ for some $\left.b \in \mathbb{Z}_{n}\right\}$
*Theorem 21: U_{n}, is a group (under multiplication)

* Theorem 22: $\mathbb{Z}_{p}{ }^{*}=\left\{a \in \mathbb{Z}_{p} \mid a \neq 0\right\}$, the set of non-zero elements of \mathbb{Z}_{p}, where p is prime, is a group under multiplication.

April 25, 2020
Definition/Notation: If G is a group with operation written as multiplication, and $a \in G$ then $a^{2}=a a$ and $a^{n}=\underbrace{a a \ldots a}_{\mathrm{n} \text { factors }}$ if n is a positive integer. $a^{n}=\underbrace{a^{-1} a^{-1} \ldots a^{-1}}_{|n| \text { factors }}$ if n is a negative integer and $a^{0}=e$ where e is the identity.

Theorem 23: If G is a group and $a \in G$ then $a^{n} a^{m}=a^{n+m}$
prove the theorem for the cases:
a) $n=0$ or $m=0$
b) $n>0$ and $m>0$
c) $n<0$ and $m<0$
d) $n>0$ and $m<0$, and $n>m$
e) $n>0$ and $m<0$, and $n<m$
f) $n<0$ and $m>0$, and $n>m$
g) $n<0$ and $m>0$, and $n<m$

Definition: The order of a group is the number of elements in the group.
Definition: In a group G with element $a \in G$, if $a^{n}=e$ for some integer $n>0$, then the element a has finite order. If k is the smallest positive integer such that $a^{n}=e$, then a has order k. If $a^{n} \neq e$ for every positive integer n, then a has infinite order.

* Theorem 24: If G is a group and $a \in G$ such that $a^{i}=a^{j}$ for two distinct integers $i \neq j$, then a has finite order.
* Theorem 25: If G is a group and $a \in G$ such that $a^{n}=e$, then the order of a is a divisor of n.
*Theorem 26: If G is a group and $a \in G$ such that a has order n, then $a^{i}=a^{j}$ if and only if $n \mid(j-i)$

Definition: In a group G with elements $a, b \in G$, the set $\langle a\rangle \subseteq G$ is the smallest subgroup of G that contains a, and $\langle a, b\rangle$ is the smallest subgroup of G that contains both a and b.

* Lemma 27: In a group G (with the default multiplicative notation for the binary operation), and $a \in G$ then $\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ is a subgroup of G.

Theorem 28: In a group G (with the default multiplicative notation for the binary operation), and $a \in G$ then $\left\{a^{n} \mid n \in \mathbb{Z}\right\}=\langle a\rangle$

Definition: A group G is commutative if for every pair of elements $a, b \in G, a b=b a$. A commutative group is also called an abelian group.
Theorem 29: In a group G, with element $a \in G$, then $\langle a\rangle$ is an abelian group.
Definition: In a group G, with element $a \in G$, the subgroup $\langle a\rangle$ is called a cyclic group.

April 25, 2020
Theorem 30: If G is a group and $a \in G$ has infinite order, then all of the elements a^{n} where $n \in \mathbb{Z}$ are distinct.

Definition: Given a group G with operation * and H is a group with operation \#, and $f: G \rightarrow H$ is a relation that pairs elements of G with elements of H. The relation f is a function if each element of G is paired with a unique element of H.

Definition: Given a group G with operation * and H is a group with operation \#, and $f: G \rightarrow H$ is a function. The function f is called a homomorphism if it preserves the group operation, which means for any $a, b \in G, f(a * b)=f(a) \# f(b)$

Definition: Given sets S and T, a function $f: S \rightarrow T$ is 1-to-1 if for every $a, b \in S$, if $f(a)=f(b)$ then $a=b$. A 1-to-1 function is called an injection.

Theorem 31: Given sets S and T, a function $f: S \rightarrow T$ is an injection if and only if, for every $t \in T$ the set $f^{-1}(t)=\{s \in S \mid f(s)=t\}$ contains at most one element.
Definition: Given sets S and T, a function $f: S \rightarrow T$ is onto if for every $t \in T$, there exists an element $s \in S$ such that $f(s)=t$. An onto function is called a surjection

Theorem 32: Given sets S and T, a function $f: S \rightarrow T$ is a surjection if and only if every $t \in T$ the set $f^{-1}(t)=\{s \in S \mid f(s)=t\}$ contains at least one element.
Definition: A function that is both an injection and a surjection is called a bijection.
Definition: Given groups G and H, and function $f: G \rightarrow H$, then f is an isomorphism if it is a bijective homomorphism.

Theorem 33: A cyclic group with finite order n is isomorphic to the group \mathbb{Z}_{n} with operation addition.

Theorem 34: A cyclic group with infinite order is isomorphic to the group \mathbb{Z} with order addition.
*Theorem 35: Given groups G and H, and a homomorphism $f: G \rightarrow H$, then $f(G)=\{f(x) \mid x \in G\} \subseteq H$ is a subgroup of H.

Definition: A ring is a set of elements R together with two binary operations that are denoted as addition $(+)$ and multiplication (\times or \cdot) with the properties:

1) R is closed under addition: if $a, b \in R$ then $a+b \in R$
2) Addition is associative: if $a, b, c \in R$ then $(a+b)+c=a+(b+c)$
3) Addition is commutative: if $a, b \in R$ then $a+b=b+a$
4) R has an additive identity: there exists an element $0 \in R$ such that $0+a=a$
5) Every element in R has an additive inverse: if $a \in R$ then $-a \in R$ such that $a+-a=0$
6) R is closed under multiplication: if $a, b \in R$ then $a b \in R$
7) Multiplication is associative: if $a, b, c \in R$ then ($a b$) $c=a(b c)$
8) Multiplication is distributive over addition: if $a, b, c \in R$ then $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$

Definition: A ring R is a commutative ring if multiplication is commutative. That is: if $a, b \in R$ then $a b=b a$

Definition: A ring, R, is a ring with identity or a ring with unity if it has a multiplicative identity: i.e. If there exists an element $1 \in R$ such that $1 \cdot a=a \cdot 1=a$ for all $a \in R$

Theorem 36: \mathbb{Z}_{n} is a commutative ring.
Theorem 37: If $R,+, \cdot$ is a ring, then $R,+$ is an abelian group
*Theorem 38: If $R,+, \cdot$ is a ring, and $a \in R$ then $a \cdot 0=0 \cdot a=0$ (hint: $0+0=0$)
Definition: Given a ring R with identity, then an element $a \in R$ is a unit if it has a multiplicative inverse in R : i.e. $a \in R$ is a unit if there exists an element $a^{-1} \in R$ such that $a \cdot a^{-1}=a^{-1} \cdot a=1$

Definition: Given a ring R, then an element $a \in R$ is zero-divisor if it is one of a non-zero pair of elements whose product is 0 : i.e. $a \in R$ is a zero-divisor if there is an element $b \in R$ such that $a \neq 0$ and $b \neq 0$ and $a b=0$ or $b a=0$.
(*) Theorem 39: The additive identity of a ring R is unique.
*Theorem 40: The multiplicative identity of a ring with identity (R) is unique. (Hint: if there were two identities, what would their product be?)
(*) Theorem 41: For any element a of a ring R, the additive inverse of a is unique.
*Theorem 42: For any unit a of a ring R, the multiplicative inverse of a is unique.
*Theorem 43 Prove that any element a of a ring R can't be both a unit and a zero divisor.
Definition: A commutative ring with identity, R, is an integral domain if it has no zero-divisors
Definition: A field is a commutative ring with identity, where all of the non-zero elements are units.

April 25, 2020
Definition: If R is a ring, then a subset $S \subseteq R$ is a subring of R if it is a ring (using the same operations that are defined for R).

Theorem 44: If R is a ring, then a subset $S \subseteq R$ is a subring of R if it satisfies the conditions:
i. $\quad S$ is closed under addition (if $a, b \in S$ then $a+b \in S$)
ii. $\quad S$ is closed under multiplication (if $a, b \in S$ then $a b \in S$)
iii. every element of S has an additive inverse in S (if $a \in S$ then $-a \in S$ where $a+-a=0$)

* Theorem 45: If $a, b \in R$ then $a(-b)=-(a b)$ and $(-a) b=-(a b)$
* Theorem 46: If $a \in R$ then $-(-a)=a$
* Theorem 47: If $a, b \in R$ then $-(a+b)=-a+-b$
* Theorem 48: If $a, b \in R$ then $(-a)(-b)=a b$

Definition: Saying that ring R, has the multiplicative cancellation property means: for $a, b, c \in R$, if $a b=a c$ or $b a=c a$ then $b=c$

* Theorem 49: A ring R has the multiplicative cancellation property if and only if R has no zero divisors.
* Theorem 50 If $S \subseteq R$ and $T \subseteq R$ are both subrings of R, then $S \cap T$ is a subring of R.

Definition: If R and S are rings and $f: R \rightarrow S$ is a function and $a, b \in R$, then f is a ring homomorphism if $f(a+b)=f(a)+f(b)$ and $f(a b)=f(a) f(b)$.

Definition: If R and S are rings and $f: R \rightarrow S$ is a function, then f is a ring isomorphism if it is a ring homomorphism, and it is one-to-one and onto.

Theorem 51: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism, and if we name the additive identities of R and S to be 0_{R} and 0_{S} respectively, then $f\left(0_{R}\right)=0_{S}$

Theorem 52: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism, and $a \in R$, then $f(-a)=-f(a)$.

Theorem 53: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism, then $f(R)=\{f(x) \mid x \in R\} \subseteq S$ is a subring of S.

April 25, 2020
Theorem 54: If R is a ring and $a \in R$ then the set $a R=\{a x \mid x \in R\} \subseteq R$ is a subring of R and the set $R a=\{x a \mid x \in R\} \subseteq R$ is a subring of R.

Theorem 55: Given a ring R, we can adjoin a formal element x to create a ring $R[x]$ of formal polynomials with coefficients in R with the following properties:

- R is a subring of $R[x]$
- If $a \in R$ then $a x=x a$ (note: elements of R commute with x, but they don't necessarily commute with each other)
- Every element has a unique representation as a polynomial.

Definition: The degree of a polynomial $p(x) \in R[x]$ is the highest exponent that has a non-zero coefficient.

Theorem 56: If F is a field and $f(x), g(x) \in F[x]$ such that $g(x) \neq 0$ then there exist unique $q(x), r(x) \in F[x]$ such that $f(x)=g(x) q(x)+r(x)$ and $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ or $r(x)=0$.

Definition: If $f(x), g(x) \in F[x]$, then $f(x) \mid g(x)$ means there exists $h(x) \in F[x]$ such that $g(x)=f(x) h(x)$.

Definition: If R is a ring with identity, then a monic polynomial in $R[x]$ is a polynomial whose leading coefficient is 1 . (Note: the leading coefficient is the coefficient of the term with the highest power of x)

Definition: If F is a field, and $f(x), g(x) \in F[x]$, then $f(x)$ and $g(x)$ are associates if $f(x)=\operatorname{cg}(x)$ where $c \in F$ and $c \neq 0$.

Theorem 57: If F is a field and $f(x) \in F[x]$, then $f(x)$ has a unique associate which is a monic polynomial.

Definition: If $f(x), g(x) \in F[x]$ such that not both of f and g are 0 , then the greatest common divisor of f and g is the monic polynomial of highest degree that divides both $f(x)$ and $g(x)$.

Theorem 58: If F is a field, and $f(x), g(x) \in F[x]$ such that $f(x) \neq 0$ or $g(x) \neq 0$, then there is a unique greatest common divisor $d(x)=\operatorname{gcd}(f(x), g(x))$, and there exist polynomials $u(x), v(x) \in F[x]$ (not necessarily unique) such that $d(x)=u(x) f(x)+v(x) g(x)$

Definition: Let F be a field and let $p(x) \in F[x]$ be a non-constant polynomial, then $p(x)$ is irreducible if its only divisors are non-zero constants and its associates.
*Theorem 59 (factor theorem): If F is a field, $a \in F$ and $f(x) \in F[x]$ then $f(a)=0$ if and only if $(x-a) \mid f(x)$

Theorem 60: Let F be a field and let $f(x) \in F[x]$ be a non-constant polynomial, then $f(x)$ is factorable into irreducible polynomials, and that factorization is unique up to associates.

April 25, 2020
Theorem 61 (remainder theorem): If F is a field, $a \in F$ and $f(x), g(x) \in F[x]$ such that $\operatorname{deg}(g(x))=1$ and $g(a)=0$. Let $r(x) \in F[x]$ be the remainder polynomial that satisfies $f(x)=g(x) q(x)+r(x)$ and $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ or $r(x)=0$. Then $r(x)$ is a constant and $f(a)=r(x)$.

Theorem 62 (Fundamental Theorem of Algebra): Every polynomial in $\mathbb{C}[x]$ has a complex root (that is, if $f(x) \in \mathbb{C}[x]$ and $\operatorname{deg}(f(x))>0$ then there exists a number $a \in \mathbb{C}$ such that $f(a)=0$.

Theorem 63 (Corollary to the Fundamental Theorem of Algebra): Every polynomial in $\mathbb{C}[x]$ is factorable into degree 1 polynomials.

Definition: If $I \subseteq R$ is a subring of R, and if for any $i \in I$ and $r \in R$ then $i r \in I$ and $r i \in I$, then I is called an ideal

Theorem 64: If I is a non-empty subset of R, then I is an ideal if:
i. $\quad I$ is closed under addition (if $a, b \in I$ then $a+b \in I$)
ii. Every element of I has an additive inverse in I (if $a \in I$ then $-a \in I$ where $a+-a=0$)
iii. $\quad I$ absorbs elements of R under multiplication: if $a \in I$ and $r \in R$ then ir $\in I$ and $r i \in I$
*Theorem 65: If R is a commutative ring and $c \in R$, then $c R=\{c x \mid x \in R\}$ is an ideal in R.
Definition: If R is a commutative ring that has a (multiplicative) identity, and $c \in R$, then $c R=\{c x \mid x \in R\}$ is a principal ideal of R. This ideal has two standard representations: in addition to $c R$ the textbook uses the notation: (c) to represent the principal ideal generated by c . This notation is particularly common when talking about principal ideals in a polynomial ring.

Definition: If I is an ideal in a ring R, and $a \in R$ then the coset $a+I \subseteq R$ is the set:
$a+I=\{a+x \mid x \in I\}$
Theorem 66: If I is an ideal in a ring R, then every element $a \in R$ is in some coset of I, and in particular, $a \in a+I$

Theorem 67: : If I is an ideal in a ring R, and $a+I$ shares an element with $b+I$ then $a+I=b+I$

Note: The contrapositive of theorem 67 says that if the cosets are not equal, then they are disjoint, which means they do not share any elements

Definition: If I is an ideal in a ring R, and $a, b \in R$ then \boldsymbol{a} is congruent to \boldsymbol{b} modulo \boldsymbol{I} if $b+(-a) \in I$. We write $a \equiv b(\bmod I)$

April 25, 2020
Theorem 68: If I is an ideal in a ring R, and $a \in R$ then $a \equiv a(\bmod I)$
Theorem 69: If I is an ideal in a ring R, and $a, b \in R$ such that $a \equiv b(\bmod I)$ then $b \equiv a(\bmod I)$
Theorem 70: If I is an ideal in a ring R, and $a, b, c \in R$ such that $a \equiv b(\bmod I)$ and $b \equiv c(\bmod I)$ then $a \equiv c(\bmod I)$

Theorem 71: If I is an ideal in a ring R, and $a \in R$ then $a+I=\{x \mid x \in R$ and $a \equiv x\}$
Theorem 72: If I is an ideal in a ring R, and $a, b, c, d \in R$ such that $a \equiv b(\bmod I)$ and $c \equiv d(\bmod I)$ then $a+c \equiv b+d(\bmod I)$.

Note: This is equivalent to: $(a+I)+(b+I)=\{a+i+b+j \mid i, j \in I\} \subseteq(a+b)+I$
Theorem 73: If I is an ideal in a ring R, and $a, b, c, d \in R$ such that $a \equiv b(\bmod I)$ and $c \equiv d(\bmod I)$ then $a c \equiv b d(\bmod I)$

Note: This is equivalent to: $(a+I)(b+I)=\{(a+i)(b+j) \mid i, j \in I\} \subseteq(a b)+I$
Definition: If I is an ideal in a ring R, and, then the set of cosets consists of all of the cosets of I
Theorem 74: If I is an ideal in a ring R, then the set of cosets of I is also a ring, where addition and multiplication are defined by $(a+I)+(b+I)=(a+b)+I$ and $(a+I)(b+I)=(a b)+I$. We call R / I the quotient ring of $\boldsymbol{R} \bmod I$. We write $R / I=\{a+I \mid a \in R\}$

Theorem 75: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism, then $f\left(0_{R}\right)=0_{S}$ where 0_{R} is the additive identity in R, and 0_{S} is the additive identity in S.

Theorem 76: If R is a ring that has a multiplicative identity 1_{R}, and S is a field whose multiplicative identity is 1_{S}, and $f: R \rightarrow S$ is a ring homomorphism and there is some $a \in R$ such that $f(a) \neq 0$, then $f\left(1_{R}\right)=1_{S}$

Theorem 77: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism and $a \in R$, then $f(-a)=-f(a)$

Theorem 53/78: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism, then $f(R)=\{f(x) \mid x \in R\} \subseteq S$ is a subring of S.

Definition: The kernel of a function on rings $f: R \rightarrow S$ is the set of all elements that map to 0 : $\operatorname{ker}(f)=\left\{x \in R \mid f(x)=0_{s}\right\}$

Theorem 79: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism, then $\operatorname{ker}(f) \subseteq R$ is an ideal in R.

Theorem 80 (First Isomorphism Theorem): If R and S are rings, and $f: R \rightarrow S$ is a surjective (onto) ring homomorphism, then $R / \operatorname{ker}(f) \cong S$ with isomorphism $\phi(r+\operatorname{ker}(f))=f(r)$ where $r+\operatorname{ker}(f) \in R /(\operatorname{ker}(f))$

Theorem 81: If $f(x) \in F[x]$ is an irreducible polynomial with coefficients in the field F, then $F[x] /(f(x))$ is a field.

Definition: If F is a field subfield of \mathbb{C}, and $\alpha \in \mathbb{C}$, then $F(\alpha)$ is the smallest subfield of \mathbb{C} that contains both F and α

Theorem 82: If $f(x) \in F[x]$ is an irreducible polynomial with coefficients in a field F such that $\mathbb{Q} \subseteq F \subseteq \mathbb{C}$, and $\alpha \in \mathbb{C}$ such that $f(\alpha)=0$ then $\phi: F[x] /(f(x)) \rightarrow F(\alpha)$ defined by $\phi(g(x)+(f(x)))=g(\alpha)$ for every $g(x)+(f(x)) \in F[x] /(f(x))$ is an isomorphism

