Abstract Algebra Definitions and Theorems

Definition A group is a set of elements G together with a binary operation # that have the properties:

- 1. Closure: If $a, b \in G$ then $a \# b \in G$
- 2. Associativity: If $a, b, c \in G$ then a # (b # c) = (a # b) # c
- 3. Identity under #: There is an element $e \in G$ such that if $a \in G$ then a # e = e # a = a
- 4. Inverses under #: For each $a \in G$ there is an element $a^{-1} \in G$ such that $a \# a^{-1} = a^{-1} \# a = e$.

As a default, we will use multiplication as the group operation, in which case the above properties are written:

- 1. Closure: If $a, b \in G$ then $ab \in G$
- 2. Associativity: If $a, b, c \in G$ then a(bc) = (ab)c
- 3. Identity: There is an element $e \in G$ such that if $a \in G$ then ae = ea = a
- 4. Inverses: For each $a \in G$ there is an element $a^{-1} \in G$ such that $aa^{-1} = a^{-1}a = e$.

But don't use the commutative law unless it is an Abelian group!

Definition: a group G, with operation # is an **Abelian** (commutative) group if for every $a, b \in G$ then a # b = b # a. The default operation symbol for an Abelian group is +.

***Theorem 1:** Function composition is associative.

***Theorem 2**: If G is a group, then the identity element e is unique.

Unique means that e is the only element of G that has the identity property (group: property 3)

*Theorem 3: If G is a group, then every element of G has a unique inverse.

***Theorem 4:** If G is a group and $a, b \in G$ then $(ab)^{-1} = b^{-1}a^{-1}$

***Theorem 5:** If G is a group and $a \in G$ then $(a^{-1})^{-1} = a$

Definition If G is a group, and $H \subseteq G$ is a subset of G, such that H is a group, then H is a **subgroup** of G.

Theorem 6: If G is a group, and $H \subseteq G$ is a non-empty subset of G such that

- 1. *H* is closed: if $a, b \in H$ then $ab \in H$
- 2. The inverse of every element in *H* is also in *H*: If $a \in H$ then there is an element $a^{-1} \in H$ such that $aa^{-1} = a^{-1}a = e$

Then H is a subgroup of G.

prove theorem 6 by explaining why all 4 of the group properties must be true for H.

Well Ordering Axiom Every non-empty subset of the non-negative integers contains a smallest element.

Theorem 7: Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$ (*b* is a positive integer), then there exist unique integers q, r such that a = bq + r and $0 \le r < b$

Definition: Let *a* and *b* be integers where not both are zero, then d = gcd(a,b) is the greatest common divisor of *a* and *b*, which means:

- $d \mid a \text{ and } d \mid b$
- If $c \mid a$ and $c \mid b$ then $c \leq d$

Note: our textbook writes (a,b) = gcd(a,b)

Theorem 8 (1.2): Let *a* and *b* be integers where not both are zero, and d = gcd(a, b). There exist $u, v \in \mathbb{Z}$ such that d = au + bv

*Theorem 9 (1.3): Let *a* and *b* be integers where not both are zero, and d = gcd(a, b). Then if $c \mid a$ and $c \mid b$ then $c \mid d$

*Theorem 10 (1.4): Let $a, b, c \in \mathbb{Z}$ such that a | bc and gcd(a, b) = 1 then a | chint: consider $c \cdot 1 = c(au + bv)$

*Theorem 11: Let $a, b, c \in \mathbb{Z}$, and let d = gcd(a, b). Then ax + by = c has integer solutions if and only if $d \mid c$ (pg. 16 # 24)

Definition: Let *p* be an integer such that $p \neq 0, \pm 1$, then *p* is **prime** means:

Given $b, c \in \mathbb{Z}$, if $p \mid bc$ then $p \mid b$ or $p \mid c$

Definition: Let *p* be an integer such that $p \neq 0, \pm 1$, then *p* is **irreducible** means the only divisors of *p* are ± 1 and $\pm p$

*Theorem 12: An integer p be an integer such that $p \neq 0, \pm 1$ is prime if and only of it is irreducible.

*Theorem 13 (1.6): Let p be a prime integer and let $p | a_1 a_2 \dots a_n$ then p divides at least one of the factors a_i .

Theorem 14(1.7): Every integer *n* except $0, \pm 1$ is a product of primes.

Theorem 15 (Fundamental Theorem of Arithmetic, 1.8): If $n \in \mathbb{Z}$ and $n \neq 0, \pm 1$ then *n* is a product of primes, and the prime factorization is unique in the sense that if

 $n = p_1 p_2 \dots p_r$ and $n = q_1 q_2 \dots q_s$

such that all of the p_i and q_j are prime,

then r = s and the q_i factors can be re-ordered such that $p_i = \pm q_i$

(We can use a permutation to write $f: \{1, 2, ..., s\} \rightarrow \{1, 2, ..., s\}$ is a permutation, and $p_i = \pm q_{f(i)}$)

Definition: Let *a*, *b*, *n* be integers, with n > 0, then *a* is congruent to *b* modulo *n* if n | (b-a). This is most often written $a \equiv b \pmod{n}$. If it is clear from the context of the problem, that all numbers are to be considered mod *n*, you will sometimes see $a \equiv b$ or a = b.

*Theorem 16: Let *a*, *b*, *n* be integers, with n > 0, then

- a) $a \equiv a \pmod{n}$
- b) If $a \equiv b \pmod{n}$ then $b \equiv a \pmod{n}$
- c) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$

Definition: Let *a*, *b*, *n* be integers, with n > 0, then the **congruence class of** *a* **modulo** *n* is the set of all integers congruent to *a* modulo *n*. Sometimes we write [a] or $[a]_n$, and the equivalence class is defined to be $\{b | b \in \mathbb{Z} \text{ and } b \equiv a \pmod{n}\}$.

Theorem 17: $[a]_n = [c]_n$ if and only if $a \equiv c \pmod{n}$

***Theorem 18:** If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then

- a) $a+c \equiv b+d \pmod{n}$
- b) $ac \equiv bd \pmod{n}$

Definition: The set of all congruence classes modulo *n* is denoted \mathbb{Z}_n , which is called "Z-n" or the "integers mod n" or "mod n numbers". Elements of \mathbb{Z}_n are sometimes written as $[a]_n$ or [a] but usually they are just written *a*. Each congruence class has a simplest form, which is the element of the equivalence class in the range $0 \le a < n$. In most cases, you should give answers to questions in \mathbb{Z}_n in simplest form.

Definition: Two integers are relatively prime if their greatest common divisor is 1.

***Theorem 19:** The element $a \in \mathbb{Z}_n$ has a multiplicative inverse $b \in \mathbb{Z}_n$ if and only if a and n are relatively prime.

***Theorem 20:** \mathbb{Z}_n , + is a group (under addition)

Definition: The set of elements of \mathbb{Z}_n that have multiplicative inverses is called U_n . In set notation: $U_n = \{a \in \mathbb{Z}_n \mid ab = 1 \text{ for some } b \in \mathbb{Z}_n\}$

***Theorem 21:** U_n , \cdot is a group (under multiplication)

* **Theorem 22:** $\mathbb{Z}_p^* = \{a \in \mathbb{Z}_p \mid a \neq 0\}$, the set of non-zero elements of \mathbb{Z}_p , where *p* is prime, is a group under multiplication.

Definition/Notation: If G is a group with operation written as multiplication, and $a \in G$ then $a^2 = aa$ and $a^n = \underbrace{aa...a}_{n \text{ factors}}$ if n is a positive integer. $a^n = \underbrace{a^{-1}a^{-1}...a^{-1}}_{|n| \text{ factors}}$ if n is a negative integer and

 $a^0 = e$ where *e* is the identity.

Theorem 23: If G is a group and $a \in G$ then $a^n a^m = a^{n+m}$

prove the theorem for the cases:

- a) n=0 or m=0
- b) n > 0 and m > 0
- c) n < 0 and m < 0
- d) n > 0 and m < 0, and n > m
- e) n > 0 and m < 0, and n < m
- f) n < 0 and m > 0, and n > m
- g) n < 0 and m > 0, and n < m

Definition: The order of a group is the number of elements in the group.

Definition: In a group G with element $a \in G$, if $a^n = e$ for some integer n > 0, then the element a has finite order. If k is the smallest positive integer such that $a^n = e$, then a has order k. If $a^n \neq e$ for every positive integer n, then a has infinite order.

* Theorem 24: If G is a group and $a \in G$ such that $a^i = a^j$ for two distinct integers $i \neq j$, then a has finite order.

* Theorem 25: If G is a group and $a \in G$ such that $a^n = e$, then the order of a is a divisor of n.

*Theorem 26: If G is a group and $a \in G$ such that a has order n, then $a^i = a^j$ if and only if $n \mid (j-i)$

Definition: In a group G with elements $a, b \in G$, the set $\langle a \rangle \subseteq G$ is the smallest subgroup of G that contains a, and $\langle a, b \rangle$ is the smallest subgroup of G that contains both a and b.

* Lemma 27: In a group G (with the default multiplicative notation for the binary operation), and $a \in G$ then $\{a^n \mid n \in \mathbb{Z}\}$ is a subgroup of G.

Theorem 28: In a group *G* (with the default multiplicative notation for the binary operation), and $a \in G$ then $\{a^n \mid n \in \mathbb{Z}\} = \langle a \rangle$

Definition: A group *G* is **commutative** if for every pair of elements $a, b \in G$, ab = ba. A commutative group is also called an **abelian** group.

Theorem 29: In a group G, with element $a \in G$, then $\langle a \rangle$ is an abelian group.

Definition: In a group G, with element $a \in G$, the subgroup $\langle a \rangle$ is called a **cyclic group**.

Theorem 30: If G is a group and $a \in G$ has infinite order, then all of the elements a^n where $n \in \mathbb{Z}$ are distinct.

Definition: Given a group G with operation * and H is a group with operation #, and $f: G \rightarrow H$ is a relation that pairs elements of G with elements of H. The relation f is a **function** if each element of G is paired with a unique element of H.

Definition: Given a group G with operation * and H is a group with operation #, and $f: G \to H$ is a function. The function f is called a **homomorphism** if it preserves the group operation, which means for any $a, b \in G$, f(a * b) = f(a) # f(b)

Definition: Given sets *S* and *T*, a function $f: S \to T$ is **1-to-1** if for every $a, b \in S$, if f(a) = f(b) then a = b. A 1-to-1 function is called an **injection**.

Theorem 31: Given sets *S* and *T*, a function $f: S \to T$ is an injection if and only if, for every $t \in T$ the set $f^{-1}(t) = \{s \in S \mid f(s) = t\}$ contains at most one element.

Definition: Given sets *S* and *T*, a function $f: S \to T$ is **onto** if for every $t \in T$, there exists an element $s \in S$ such that f(s) = t. An onto function is called a **surjection**

Theorem 32: Given sets *S* and *T*, a function $f: S \to T$ is a surjection if and only if every $t \in T$ the set $f^{-1}(t) = \{s \in S \mid f(s) = t\}$ contains at least one element.

Definition: A function that is both an injection and a surjection is called a bijection.

Definition: Given groups G and H, and function $f: G \to H$, then f is an **isomorphism** if it is a bijective homomorphism.

Theorem 33: A cyclic group with finite order *n* is isomorphic to the group \mathbb{Z}_n with operation addition.

Theorem 34: A cyclic group with infinite order is isomorphic to the group \mathbb{Z} with order addition.

*Theorem 35: Given groups G and H, and a homomorphism $f: G \to H$, then $f(G) = \{f(x) | x \in G\} \subseteq H$ is a subgroup of H.

Definition: A ring is a set of elements *R* together with two binary operations that are denoted as addition (+) and multiplication (\times or \cdot) with the properties:

- 1) *R* is closed under addition: if $a, b \in R$ then $a + b \in R$
- 2) Addition is associative: if $a, b, c \in R$ then (a+b)+c=a+(b+c)
- 3) Addition is commutative: if $a, b \in R$ then a+b=b+a
- 4) *R* has an additive identity: there exists an element $0 \in R$ such that 0 + a = a
- 5) Every element in *R* has an additive inverse: if $a \in R$ then $-a \in R$ such that a + -a = 0
- 6) *R* is closed under multiplication: if $a, b \in R$ then $ab \in R$
- 7) Multiplication is associative: if $a, b, c \in R$ then (ab)c = a(bc)
- 8) Multiplication is distributive over addition: if $a,b,c \in R$ then a(b+c) = ab+ac and (b+c)a = ba+ca

Definition: A ring *R* is a **commutative ring** if multiplication is commutative. That is: if $a, b \in R$ then ab = ba

Definition: A ring, *R*, is a ring with **identity** or a ring with **unity** if it has a multiplicative identity: i.e. If there exists an element $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$

Theorem 36: \mathbb{Z}_n is a commutative ring.

Theorem 37: If $R, +, \cdot$ is a ring, then R, + is an abelian group

*Theorem 38: If $R, +, \cdot$ is a ring, and $a \in R$ then $a \cdot 0 = 0 \cdot a = 0$ (hint: 0+0=0)

Definition: Given a ring *R* with identity, then an element $a \in R$ is a **unit** if it has a multiplicative inverse in *R*: i.e. $a \in R$ is a **unit** if there exists an element $a^{-1} \in R$ such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$

Definition: Given a ring R, then an element $a \in R$ is **zero-divisor** if it is one of a non-zero pair of elements whose product is 0: i.e. $a \in R$ is a **zero-divisor** if there is an element $b \in R$ such that $a \neq 0$ and $b \neq 0$ and ab = 0 or ba = 0.

(*) **Theorem 39:** The additive identity of a ring *R* is unique.

*Theorem 40: The multiplicative identity of a ring with identity (R) is unique. (Hint: if there were two identities, what would their product be?)

(*) Theorem 41: For any element *a* of a ring *R*, the additive inverse of *a* is unique.

*Theorem 42: For any unit *a* of a ring *R*, the multiplicative inverse of *a* is unique.

*Theorem 43 Prove that any element a of a ring R can't be both a unit and a zero divisor.

Definition: A commutative ring with identity, R, is an integral domain if it has no zero-divisors

Definition: A **field** is a commutative ring with identity, where all of the non-zero elements are units.

Definition: If *R* is a ring, then a subset $S \subseteq R$ is a subring of *R* if it is a ring (using the same operations that are defined for *R*).

Theorem 44: If R is a ring, then a subset $S \subseteq R$ is a subring of R if it satisfies the conditions:

- i. S is closed under addition (if $a, b \in S$ then $a + b \in S$)
- ii. S is closed under multiplication (if $a, b \in S$ then $ab \in S$)
- iii. every element of S has an additive inverse in S (if $a \in S$ then $-a \in S$ where a + -a = 0)
- * Theorem 45: If $a, b \in R$ then a(-b) = -(ab) and (-a)b = -(ab)
- * Theorem 46: If $a \in R$ then -(-a) = a
- * Theorem 47: If $a, b \in R$ then -(a+b) = -a+-b
- * Theorem 48: If $a, b \in R$ then (-a)(-b) = ab

Definition: Saying that ring *R*, has the **multiplicative cancellation property** means: for $a,b,c \in R$, if ab = ac or ba = ca then b = c

* **Theorem 49:** A ring *R* has the multiplicative cancellation property if and only if *R* has no zero divisors.

* Theorem 50 If $S \subseteq R$ and $T \subseteq R$ are both subrings of R, then $S \cap T$ is a subring of R.

Definition: If R and S are rings and $f: R \to S$ is a function and $a, b \in R$, then f is a ring homomorphism if f(a+b) = f(a) + f(b) and f(ab) = f(a)f(b).

Definition: If *R* and *S* are rings and $f: R \rightarrow S$ is a function, then *f* is a ring **isomorphism** if it is a ring homomorphism, and it is one-to-one and onto.

Theorem 51: If *R* and *S* are rings, and $f: R \to S$ is a ring homomorphism, and if we name the additive identities of *R* and *S* to be 0_R and 0_S respectively, then $f(0_R) = 0_S$

Theorem 52: If *R* and *S* are rings, and $f: R \to S$ is a ring homomorphism, and $a \in R$, then f(-a) = -f(a).

Theorem 53: If *R* and *S* are rings, and $f: R \to S$ is a ring homomorphism, then $f(R) = \{f(x) | x \in R\} \subseteq S$ is a subring of *S*.

Theorem 54: If *R* is a ring and $a \in R$ then the set $aR = \{ax \mid x \in R\} \subseteq R$ is a subring of *R* and the set $Ra = \{xa \mid x \in R\} \subseteq R$ is a subring of *R*.

Theorem 55: Given a ring R, we can adjoin a formal element x to create a ring R[x] of formal polynomials with coefficients in R with the following properties:

- R is a subring of R[x]
- If $a \in R$ then ax = xa (note: elements of *R* commute with *x*, but they don't necessarily commute with each other)
- Every element has a unique representation as a polynomial.

Definition: The **degree** of a polynomial $p(x) \in R[x]$ is the highest exponent that has a non-zero coefficient.

Theorem 56: If F is a field and $f(x), g(x) \in F[x]$ such that $g(x) \neq 0$ then there exist unique $q(x), r(x) \in F[x]$ such that f(x) = g(x)q(x) + r(x) and $\deg(r(x)) < \deg(g(x))$ or r(x) = 0.

Definition: If $f(x), g(x) \in F[x]$, then f(x) | g(x) means there exists $h(x) \in F[x]$ such that g(x) = f(x)h(x).

Definition: If *R* is a ring with identity, then a **monic** polynomial in R[x] is a polynomial whose leading coefficient is 1. (Note: the leading coefficient is the coefficient of the term with the highest power of *x*)

Definition: If F is a field, and $f(x), g(x) \in F[x]$, then f(x) and g(x) are associates if f(x) = cg(x) where $c \in F$ and $c \neq 0$.

Theorem 57: If F is a field and $f(x) \in F[x]$, then f(x) has a unique associate which is a monic polynomial.

Definition: If $f(x), g(x) \in F[x]$ such that not both of f and g are 0, then the **greatest common** divisor of f and g is the monic polynomial of highest degree that divides both f(x) and g(x).

Theorem 58: If F is a field, and $f(x), g(x) \in F[x]$ such that $f(x) \neq 0$ or $g(x) \neq 0$, then there is a unique greatest common divisor $d(x) = \gcd(f(x), g(x))$, and there exist polynomials $u(x), v(x) \in F[x]$ (not necessarily unique) such that d(x) = u(x)f(x) + v(x)g(x)

Definition: Let *F* be a field and let $p(x) \in F[x]$ be a non-constant polynomial, then p(x) is **irreducible** if its only divisors are non-zero constants and its associates.

*Theorem 59 (factor theorem): If F is a field, $a \in F$ and $f(x) \in F[x]$ then f(a) = 0 if and only if (x-a) | f(x)

Theorem 60: Let F be a field and let $f(x) \in F[x]$ be a non-constant polynomial, then f(x) is factorable into irreducible polynomials, and that factorization is unique up to associates.

Theorem 61 (remainder theorem): If *F* is a field, $a \in F$ and $f(x), g(x) \in F[x]$ such that $\deg(g(x)) = 1$ and g(a) = 0. Let $r(x) \in F[x]$ be the remainder polynomial that satisfies f(x) = g(x)q(x) + r(x) and $\deg(r(x)) < \deg(g(x))$ or r(x) = 0. Then r(x) is a constant and f(a) = r(x).

Theorem 62 (Fundamental Theorem of Algebra): Every polynomial in $\mathbb{C}[x]$ has a complex root (that is, if $f(x) \in \mathbb{C}[x]$ and $\deg(f(x)) > 0$ then there exists a number $a \in \mathbb{C}$ such that f(a) = 0.

Theorem 63 (Corollary to the Fundamental Theorem of Algebra): Every polynomial in $\mathbb{C}[x]$ is factorable into degree 1 polynomials.

•••••

Definition: If $I \subseteq R$ is a subring of R, and if for any $i \in I$ and $r \in R$ then $ir \in I$ and $ri \in I$, then I is called an **ideal**

Theorem 64: If *I* is a non-empty subset of *R*, then *I* is an ideal if:

- i. *I* is closed under addition (if $a, b \in I$ then $a + b \in I$)
- ii. Every element of *I* has an additive inverse in *I* (if $a \in I$ then $-a \in I$ where a + -a = 0)
- iii. *I* absorbs elements of *R* under multiplication: if $a \in I$ and $r \in R$ then $ir \in I$ and $ri \in I$

***Theorem 65:** If *R* is a commutative ring and $c \in R$, then $cR = \{cx \mid x \in R\}$ is an ideal in *R*.

Definition: If *R* is a commutative ring that has a (multiplicative) identity, and $c \in R$, then $cR = \{cx \mid x \in R\}$ is a **principal ideal** of *R*. This ideal has two standard representations: in addition to *cR* the textbook uses the notation: (*c*) to represent the principal ideal generated by *c*. This notation is particularly common when talking about principal ideals in a polynomial ring.

Definition: If *I* is an ideal in a ring *R*, and $a \in R$ then the **coset** $a + I \subseteq R$ is the set: $a + I = \{a + x \mid x \in I\}$

Theorem 66: If *I* is an ideal in a ring *R*, then every element $a \in R$ is in some coset of *I*, and in particular, $a \in a + I$

Theorem 67: : If *I* is an ideal in a ring *R*, and a + I shares an element with b + I then a + I = b + I

Note: The contrapositive of theorem 67 says that if the cosets are not equal, then they are disjoint, which means they do not share any elements

Definition: If *I* is an ideal in a ring *R*, and $a, b \in R$ then *a* is congruent to *b* modulo *I* if $b + (-a) \in I$. We write $a \equiv b \pmod{I}$

April 25, 2020 **Theorem 68:** If *I* is an ideal in a ring *R*, and $a \in R$ then $a \equiv a \pmod{I}$

Theorem 69: If *I* is an ideal in a ring *R*, and $a, b \in R$ such that $a \equiv b \pmod{I}$ then $b \equiv a \pmod{I}$

Theorem 70: If *I* is an ideal in a ring *R*, and $a, b, c \in R$ such that $a \equiv b \pmod{I}$ and $b \equiv c \pmod{I}$ then $a \equiv c \pmod{I}$

Theorem 71: If *I* is an ideal in a ring *R*, and $a \in R$ then $a + I = \{x \mid x \in R \text{ and } a \equiv x\}$

Theorem 72: If *I* is an ideal in a ring *R*, and $a, b, c, d \in R$ such that $a \equiv b \pmod{I}$ and $c \equiv d \pmod{I}$ then $a + c \equiv b + d \pmod{I}$.

Note: This is equivalent to: $(a+I)+(b+I) = \{a+i+b+j \mid i, j \in I\} \subseteq (a+b)+I$

Theorem 73: If *I* is an ideal in a ring *R*, and $a,b,c,d \in R$ such that $a \equiv b \pmod{I}$ and $c \equiv d \pmod{I}$ then $ac \equiv bd \pmod{I}$

Note: This is equivalent to: $(a+I)(b+I) = \{(a+i)(b+j) | i, j \in I\} \subseteq (ab)+I$

Definition: If I is an ideal in a ring R, and, then the set of cosets consists of all of the cosets of I

Theorem 74: If *I* is an ideal in a ring *R*, then the set of cosets of *I* is also a ring, where addition and multiplication are defined by (a+I)+(b+I) = (a+b)+I and (a+I)(b+I) = (ab)+I. We call R / I the **quotient ring of** *R* **mod** *I*. We write $R / I = \{a+I \mid a \in R\}$

Theorem 75: If *R* and *S* are rings, and $f: R \to S$ is a ring homomorphism, then $f(0_R) = 0_S$ where 0_R is the additive identity in *R*, and 0_S is the additive identity in *S*.

Theorem 76: If *R* is a ring that has a multiplicative identity 1_R , and *S* is a field whose multiplicative identity is 1_S , and $f: R \to S$ is a ring homomorphism and there is some $a \in R$ such that $f(a) \neq 0$, then $f(1_R) = 1_S$

Theorem 77: If *R* and *S* are rings, and $f: R \to S$ is a ring homomorphism and $a \in R$, then f(-a) = -f(a)

Theorem 53/78: If *R* and *S* are rings, and $f : R \to S$ is a ring homomorphism, then $f(R) = \{f(x) | x \in R\} \subseteq S$ is a subring of *S*.

Definition: The kernel of a function on rings $f : R \to S$ is the set of all elements that map to 0: ker $(f) = \{x \in R \mid f(x) = 0_s\}$

Theorem 79: If *R* and *S* are rings, and $f: R \to S$ is a ring homomorphism, then $ker(f) \subseteq R$ is an ideal in *R*.

Theorem 80 (First Isomorphism Theorem): If *R* and *S* are rings, and $f : R \to S$ is a surjective (onto) ring homomorphism, then $R / \ker(f) \cong S$ with isomorphism $\phi(r + \ker(f)) = f(r)$ where $r + \ker(f) \in R / (\ker(f))$

Theorem 81: If $f(x) \in F[x]$ is an irreducible polynomial with coefficients in the field *F*, then F[x]/(f(x)) is a field.

Definition: If *F* is a field subfield of \mathbb{C} , and $\alpha \in \mathbb{C}$, then $F(\alpha)$ is the smallest subfield of \mathbb{C} that contains both *F* and α

Theorem 82: If $f(x) \in F[x]$ is an irreducible polynomial with coefficients in a field *F* such that $\mathbb{Q} \subseteq F \subseteq \mathbb{C}$, and $\alpha \in \mathbb{C}$ such that $f(\alpha) = 0$ then $\phi: F[x]/(f(x)) \to F(\alpha)$ defined by $\phi(g(x)+(f(x))) = g(\alpha)$ for every $g(x)+(f(x)) \in F[x]/(f(x))$ is an isomorphism