Things you should now know about the Dihedral group:

- D_n (the dihedral group of degree *n*) is the group of symmetries of a regular *n*-gon, with operation function composition.
- This elements of this group are functions that map a regular *n*-gon to itself.
- The group operation is function composition.
- D_n consists of *n* rotations (one of which is the identity rotation of 0° or 360°) and *n* reflections
- The order of D_n (the number of elements in it) is 2n.
- Every reflection is its own inverse.
- The smallest rotation in a dihedral group is usually given the name r or ρ , and it is the rotation by $\frac{360^{\circ}}{r}$

•
$$r^k = \underbrace{r \circ r \circ \ldots \circ r}_{k \text{ times}}$$

- $r^n = e$ is the identity element of the group, and it is the function that sends every point of the *n*-gon to itself.
- The inverse of the rotation r^k is the rotation r^{n-k}
- D_n is not commutative

There are things that are fun to know about dihedral groups, that you now know enough to discover:

- 1. The order of an element *a* is the smallest natural number *k* such that $a^k = e$. What is the order of *r* in D_n ?
- 2. Draw your regular *n*-gon so that it has a vertical line of symmetry, and call the reflection in that symmetry line *v*. Now, it's going to be true that $r \circ v \neq v \circ r$, but its also true that $r \circ v = v \circ r^k$ for some *k*. What is *k*?
- 3. Every reflection in D_n can be represented as $r^k \circ v$ for some k. Why is this always true?
- 4. Given $1 \le k \le n$, for every such k, there is another number j such that $r^k \circ v = v \circ r^j$. How are j and k related?

The Associative law: For an operation *, then * is associative if a * (b * c) = (a * b) * c for all elements a, b, c.

- 5. Choose either addition or multiplication (of natural numbers) and explain why it is associative.
- 6. Write out three 2×2 matrices with all variables. Show by doing all of the long ugly calculations that matrix multiplication is associative. If you don't remember how to multiply matrices: Google it. This is messy enough that you're allowed to do this one with a partner: one of you do one side, the other do the other side, then compare.
- 7. Explain, using function notation, how we know that function composition in D_6 is associative (hint: this is done exactly the same way for showing that function composition in any context is commutative).
- 8. For each of these weird operations, decide if it is associative or not. Be prepared to explain how you decided:
 a) For the set of natural numbers, if *n* and *m* are natural numbers, then *n*m* is the least common multiple of *m* and *n*, so, for example 6*4=12. Is * associative?
 - b) For the set of rational numbers, if *n* and *m* are natural numbers, then *n*#*m* is the number half-way in between (the average of the two), for example 4#6=5 and 2#3=2.5. Is # associative?
 - c) For the set consisting of the integers, is the operation of subtraction associative?
 - d) For the set of rational numbers, with operation x * y = xy/2, for example 3*4 = 6 and 3*3 = 4.5. Is * associative?