We have the group that is all of the units mod 10 under multiplication:

 $U_{10} = \{1, 3, 7, 9\}$

When we look at possible generators, we find that 3 generates the whole group: $<3>=U_{10}$ because

 $[3]_{10}^{1} \equiv [3]_{10} \qquad [3]_{10}^{2} \equiv [9]_{10} \qquad [3]_{10}^{3} \equiv [27]_{10} \equiv [27]_{10} \qquad [3]_{10}^{4} \equiv [3]_{10}^{3} \cdot [3]_{10} \equiv [7 \cdot 3]_{10} \equiv [21]_{10} \equiv [1]_{10}$

Consider (define) $g: U_{10} \to \mathbb{Z}_4$ such that $g([3]_{10}^n) = [n]$	4 r	
		Note: I decided that $[3]_{10}^{n}$
Lemma: $[3]_{10}^n \equiv [3]_{10}^m$ if and only if $m - n = 4k$ where k is an integer.		is a better notation than
Part 1 (the tricky one): Let $[3]_{10}^{n} \equiv [3]_{10}^{m}$		$[3^n]_{10}$ because
		$[3]_{10}^{-1} = [7]_{10}$ is easier to
Then $[3]_{10}^{n} \cdot [3]_{10}^{-m} \equiv [3]_{10}^{m} \cdot [3]_{10}^{-m}$		make sense of than
So $[3]_{10}^{n-m} \equiv 1$		$[3^{-1}]_{10} = [1/3]_{10} = ???$
Which means <i>n</i> - <i>m</i> is a multiple of 4 (because $[3]_{10}^4 \equiv 1$) Therefore $n - m = 4k$ for some $k \in \mathbb{Z}$		But if you write it the
		other way it's fine.
Part 2 (not tricky at all): Let $n - m = 4k$		other way it is fine.
Then $[3]_{10}^{n-m} \equiv [3]_{10}^{4k} \equiv ([3]_{10}^{4})^k \equiv 1$		
And $[3]_{10}^{n-m}[3]_{10}^{m} \equiv 1 \cdot [3]_{10}^{m}$		
So $[3]_{10}^{n} \equiv [3]_{10}^{m}$		
Part 1: Prove g is a function	Part 3: Prove g is onto	
Let $[3]_{10}^{n}, [3]_{10}^{m} \in U_{10}$ such that $[3]_{10}^{n} \equiv [3]_{10}^{m}$	Let $[n]_4 \in \mathbb{Z}_4$	
By the lemma: $n - m = 4k$ for some $k \in \mathbb{Z}$	Then $[3]_{10}^{n} \in U_{10}$	
Thus $[n]_4 \equiv [m]_4$ (by definition of mod congruence)	and $g([3]_{10}^{n}) = [n]_4$	
Therefore $g([3]_{10}^{n}) = [n]_4 \equiv [m]_4 = g([3]_{10}^{m})$	so g is onto.	
So g is a function		
	Part 4: Prove <i>g</i> is a homomorphism: Let $[3]_{10}^{n}, [3]_{10}^{m} \in U_{10}$	
Part 2: Prove g is one-to-one Let $\begin{bmatrix} 2 \end{bmatrix}^{n} \begin{bmatrix} 2 \end{bmatrix}^{m} \in U$ such that $\alpha(\begin{bmatrix} 2 \end{bmatrix}^{n}) = \alpha(\begin{bmatrix} 2 \end{bmatrix}^{m})$		
Let $[3]_{10}^{n}, [3]_{10}^{m} \in U_{10}$ such that $g([3]_{10}^{n}) = g([3]_{10}^{m})$	Then $g([3]_{10}^{n} \cdot [3]_{10}^{m}) = g([3]_{10}^{n+m}) = [n+m]_4$	
Then $[n]_4 = [m]_4$	and $g([3]_{10}^{n}) + g([3]_{10}^{m}) = [n]_4 + [m]_4 = [n+m]_4$ Hence $g([3]_{10}^{n} \cdot [3]_{10}^{m}) = g([3]_{10}^{n}) + g([3]_{10}^{m})$ Therefore g is an homomorphism.	
So, by definition of mod number congruence, $n-m = 4k$ for some $k \in \mathbb{Z}$		
Thus by the lemma, $[3]_{10}^{n} = [3]_{10}^{m}$		
Therefore g is one-to-one.		
	Therefore g is a	an isomorphism
	L	

Consider (define) $g: U_{10} \to \mathbb{Z}_4$ such that $g([3]_{10}^n) = [n]_4$