We have the group that is all of the units mod 10 under multiplication:
$U_{10}=\{1,3,7,9\}$
When we look at possible generators, we find that 3 generates the whole group:
$<3\rangle=U_{10}$ because
$[3]_{10}{ }^{1} \equiv[3]_{10}$
$[3]_{10}{ }^{2} \equiv[9]_{10}$
$[3]_{10}{ }^{3} \equiv[27]_{10} \equiv[27]_{10}$
$[3]_{10}{ }^{4} \equiv[3]_{10}{ }^{3} \cdot[3]_{10} \equiv[7 \cdot 3]_{10} \equiv[21]_{10} \equiv[1]_{10}$

Consider (define) $g: U_{10} \rightarrow \mathbb{Z}_{4}$ such that $g\left([3]_{10}{ }^{n}\right)=[n]_{4}$

Lemma: $[3]_{10}{ }^{n} \equiv[3]_{10}{ }^{m}$ if and only if $m-n=4 k$ where k is an integer.
Part 1 (the tricky one): Let $[3]_{10}{ }^{n} \equiv[3]_{10}{ }^{m}$
Then $[3]_{10}{ }^{n} \cdot[3]_{10}{ }^{-m} \equiv[3]_{10}{ }^{m} \cdot[3]_{10}{ }^{-m}$
So $[3]_{10}{ }^{n-m} \equiv 1$
Which means $n-m$ is a multiple of 4 (because $[3]_{10}{ }^{4} \equiv 1$)
Therefore $n-m=4 k$ for some $k \in \mathbb{Z}$
Part 2 (not tricky at all): Let $n-m=4 k$

Note: I decided that $[3]_{10}{ }^{n}$ is a better notation than $\left[3^{n}\right]_{10}$ because $[3]_{10}{ }^{-1}=[7]_{10}$ is easier to make sense of than $\left[3^{-1}\right]_{10}=[1 / 3]_{10}=$???
But if you write it the other way it's fine.

Then $[3]_{10}{ }^{n-m} \equiv[3]_{10}{ }^{4 k} \equiv\left([3]_{10}{ }^{4}\right)^{k} \equiv 1$
And $[3]_{10}{ }^{n-m}[3]_{10}{ }^{m} \equiv 1 \cdot[3]_{10}{ }^{m}$
So $[3]_{10}{ }^{n} \equiv[3]_{10}{ }^{m}$

Part 1: Prove g is a function
Let $[3]_{10}{ }^{n},[3]_{10}{ }^{m} \in U_{10}$ such that $[3]_{10}{ }^{n} \equiv[3]_{10}{ }^{m}$
By the lemma: $n-m=4 k$ for some $k \in \mathbb{Z}$
Thus $[n]_{4} \equiv[m]_{4}$ (by definition of mod congruence)
Therefore $g\left([3]_{10}{ }^{n}\right)=[n]_{4} \equiv[m]_{4}=g\left([3]_{10}{ }^{m}\right)$
So g is a function
Part 2: Prove g is one-to-one
Let $[3]_{10}{ }^{n},[3]_{10}{ }^{m} \in U_{10}$ such that $g\left([3]_{10}{ }^{n}\right)=g\left([3]_{10}{ }^{m}\right)$
Then $[n]_{4}=[m]_{4}$
So, by definition of mod number congruence,
$n-m=4 k$ for some $k \in \mathbb{Z}$
Thus by the lemma, $[3]_{10}{ }^{n} \equiv[3]_{10}{ }^{m}$
Therefore g is one-to-one.

Part 3: Prove g is onto
Let $[n]_{4} \in \mathbb{Z}_{4}$
Then $[3]_{10}{ }^{n} \in U_{10}$
and $g\left([3]_{10}{ }^{n}\right)=[n]_{4}$
so g is onto.
Part 4: Prove g is a homomorphism:
Let $[3]_{10}{ }^{n},[3]_{10}{ }^{m} \in U_{10}$
Then $g\left([3]_{10}{ }^{n} \cdot[3]_{10}{ }^{m}\right)=g\left([3]_{10}{ }^{n+m}\right)=[n+m]_{4}$ and $g\left([3]_{10}{ }^{n}\right)+g\left([3]_{10}{ }^{m}\right)=[n]_{4}+[m]_{4}=[n+m]_{4}$
Hence $g\left([3]_{10}{ }^{n} \cdot[3]_{10}{ }^{m}\right)=g\left([3]_{10}{ }^{n}\right)+g\left([3]_{10}{ }^{m}\right)$
Therefore g is an homomorphism.
Therefore g is an isomorphism

