Definition: Let p be an integer such that $p \neq 0, \pm 1$, then p is prime means:
Given $b, c \in \mathbb{Z}$, if $p \mid b c$ then $p \mid b$ or $p \mid c$
Definition: Let p be an integer such that $p \neq 0, \pm 1$, then p is irreducible means the only divisors of p are ± 1 and $\pm p$
Theorem 21: An integer p be an integer such that $p \neq 0, \pm 1$ is prime if and only of it is irreducible.

Part 1: if p is prime, then it is irreducible

Proof:
Let p be prime.
Suppose that $a \mid p$. for some $a \in \mathbb{Z}$
Then $p=a b$ for some integer b.
So $p \mid a b$
by definition of prime, $p \mid a$ or $p \mid b$

case $1: p \mid a$	case 2: $p \mid b$
Then $p \mid a$ and $a \mid p$ so $a= \pm p$	But because $p=a b$ we also know $b \mid p$
Because $p \mid b$ and $b \mid p$, we know $b= \pm p$	
And $p=a(\pm p)$ so $a= \pm 1$	

Thus if a is a divisor of p then $a= \pm p$ or $a= \pm 1$ so p is irreducible.

Part 2: if \boldsymbol{p} is irreducible, then it is prime

Proof:
Let p be irreducible, and let $a, b \in \mathbb{Z}$
Suppose $p \mid a b$
Further suppose that p / a
Then let $d=\operatorname{gcd}(a, p)$
So $d|a, d| p$ and $d=a u+p v$ for some $u, v \in \mathbb{Z}$
Because p is irreducible, and $d \mid p$, then $d=1$ or $d= \pm p$ (note that the gcd is always positive, but p does not have to be positive).

case $1: d=1$	case $2: d=(\pm 1) p$
Then $1=a u+p v$	and $d \mid a$ so $a=d i$ for some $i \in \mathbb{Z}$
So $b=a b u+p b v$	so $a=(\pm 1) p \cdot i=p(\pm i)$
Recall $p \mid a b$, so $a b=p k$ for some $k \in \mathbb{Z}$	Thus $p \mid a$
Substituting in, we have: $b=p k u+p b v$ so $b=p(k u+b v)$ and thus $p \mid b$	

Therefore, if $p \mid a b$ then $p \mid b$ or $p \mid a$
so p is prime.

