Definition: Let *p* be an integer such that $p \neq 0, \pm 1$, then *p* is **prime** means:

Given $b, c \in \mathbb{Z}$, if $p \mid bc$ then $p \mid b$ or $p \mid c$

Definition: Let *p* be an integer such that $p \neq 0, \pm 1$, then *p* is **irreducible** means the only divisors of *p* are ± 1 and $\pm p$

Theorem 21: An integer p be an integer such that $p \neq 0, \pm 1$ is prime if and only of it is

irreducible.

Part 1: if *p* is prime, then it is irreducible

Proof:

Let *p* be prime.

Suppose that $a \mid p$. for some $a \in \mathbb{Z}$

Then p = ab for some integer b.

So $p \mid ab$

by definition of prime, $p \mid a$ or $p \mid b$

case 1: $p \mid a$	case 2: $p \mid b$
Then $p \mid a$ and $a \mid p$ so $a = \pm p$	But because $p = ab$ we also know $b \mid p$
	Because $p \mid b$ and $b \mid p$, we know $b = \pm p$
	And $p = a(\pm p)$ so $a = \pm 1$
Thus if a is a divisor of n then $a - \pm n$ or $a - \pm 1$	as mis impeduailela

Thus if a is a divisor of p then $a = \pm p$ or $a = \pm 1$ so p is irreducible.

Part 2: if p is irreducible, then it is prime

Proof:

Let *p* be irreducible, and let $a, b \in \mathbb{Z}$

Suppose $p \mid ab$

Further suppose that p|a

Then let $d = \gcd(a, p)$

So $d \mid a$, $d \mid p$ and d = au + pv for some $u, v \in \mathbb{Z}$

Because p is irreducible, and d | p, then d = 1 or $d = \pm p$ (note that the gcd is always positive, but p does not have to be positive).

case 1: $d = 1$	case 2: $d = (\pm 1)p$
Then $1 = au + pv$	and $d \mid a$ so $a = di$ for some $i \in \mathbb{Z}$
So $b = abu + pbv$	so $a = (\pm 1)p \cdot i = p(\pm i)$
Recall $p \mid ab$, so $ab = pk$ for some $k \in \mathbb{Z}$	Thus $p \mid a$
Substituting in, we have:	
b = pku + pbv	
so $b = p(ku + bv)$ and thus	
$p \mid b$	
Therefore, if $p \mid ab$ then $p \mid b$ or $p \mid a$	

so p is prime.