Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. Note that $A, B \in GL(2, \mathbb{R})$ which is a group with group

operation matrix multiplication.

Then $\langle A \rangle = \{A^n \mid n \in \mathbb{Z}\}\$ and $\langle B \rangle = \{B^n \mid n \in \mathbb{Z}\}\$ We deduced that $A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ and $B^n = \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$ for all $n \in \mathbb{Z}$ (We did not prove this, but we

could use induction to prove this)

Define function $f :< A > \rightarrow < B >$ such that $f \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$

(This definition tells how to map each element of $\langle A \rangle$ to a unique element of $\langle B \rangle$, so it is a function)

To prove: *f* is a homomorphism.

Let $C, D \in \langle A \rangle$

Then
$$C = \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix}$$
 and $D = \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix}$ for some numbers $r, y \in \mathbb{Z}$
 $f(C)f(D) = f\left(\begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix}\right) f\left(\begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ y & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ r+y & 0 \end{bmatrix}$

and

$$f(CD) = f\left(\begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix}\right) = f\left(\begin{bmatrix} 1 & r+y \\ 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ r+y & 1 \end{bmatrix}$$

Hence f(C)f(D) = f(CD) for all $C, D \in \langle A \rangle$, and f is a homomorphism. To prove: f is 1-to-1.

Let
$$C, D \in \langle A \rangle$$

Suppose $f(C) = f(D)$
then $f\left(\begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix}\right) = f\left(\begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix}\right)$
and $\begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ y & 1 \end{bmatrix}$
so $r = y$
therefore $\begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix}$, which says $C = D$
Thus we have proved that if $f(C) = f(D)$ then $C = D$

Which is equivalent (contrapositive) to saying if $C \neq D$ then $f(C) \neq f(D)$

And *f* is 1-to-1.

Prove f is onto:

Let $F \in \langle B \rangle$ Then $F = \begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix}$ for some $t \in \mathbb{Z}$ Because $t \in \mathbb{Z}$, we know $\begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \in \langle A \rangle$ And $f \begin{pmatrix} \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix} = F$

So, for any element $F \in \langle B \rangle$, there is an element of A that is mapped to F by f. Hence f is onto.

This proves f is a 1-to-1, onto homomorphism, so f is an isomorphism, and $\langle A \rangle \cong \langle B \rangle$ ($\langle A \rangle$ and $\langle B \rangle$ are isomorphic).