Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$. Note that $A, B \in G L(2, \mathbb{R})$ which is a group with group operation matrix multiplication.
Then $\langle A\rangle=\left\{A^{n} \mid n \in \mathbb{Z}\right\}$ and $\langle B\rangle=\left\{B^{n} \mid n \in \mathbb{Z}\right\}$
We deduced that $A^{n}=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$ and $B^{n}=\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]$ for all $n \in \mathbb{Z}$ (We did not prove this, but we could use induction to prove this)
Define function $f:<A>\rightarrow\langle B\rangle$ such that $f\left(\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]\right)=\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]$
(This definition tells how to map each element of $\langle A\rangle$ to a unique element of $\langle B\rangle$, so it is a function)
To prove: \boldsymbol{f} is a homomorphism.
Let $C, D \in<A>$
Then $C=\left[\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right]$ and $D=\left[\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right]$ for some numbers $r, y \in \mathbb{Z}$
$f(C) f(D)=f\left(\left[\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right]\right) f\left(\left[\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right]\right)=\left[\begin{array}{ll}1 & 0 \\ r & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ r+y & 0\end{array}\right]$
and
$f(C D)=f\left(\left[\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right]\right)=f\left(\left[\begin{array}{cc}1 & r+y \\ 0 & 1\end{array}\right]\right)=\left[\begin{array}{cc}1 & 0 \\ r+y & 1\end{array}\right]$
Hence $f(C) f(D)=f(C D)$ for all $C, D \in<A>$, and \boldsymbol{f} is a homomorphism.
To prove: \mathbf{f} is 1-to-1.
Let $C, D \in<A>$
Suppose $f(C)=f(D)$
then $f\left(\left[\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right]\right)=f\left(\left[\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right]\right)$
and $\left[\begin{array}{ll}1 & 0 \\ r & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right]$
so $r=y$
therefore $\left[\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right]$, which says $C=D$
Thus we have proved that if $f(C)=f(D)$ then $C=D$
Which is equivalent (contrapositive) to saying if $C \neq D$ then $f(C) \neq f(D)$
And \boldsymbol{f} is 1-to-1.

Prove \boldsymbol{f} is onto:

Let $F \in\langle B>$
Then $F=\left[\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right]$ for some $t \in \mathbb{Z}$
Because $t \in \mathbb{Z}$, we know $\left[\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right] \in\langle A\rangle$
And $f\left(\left[\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right]\right)=\left[\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right]=F$
So, for any element $F \in\langle B\rangle$, there is an element of A that is mapped to F by f. Hence \boldsymbol{f} is onto.

This proves f is a 1-to-1, onto homomorphism, so \boldsymbol{f} is an isomorphism, and $<A>\cong$ ($<A>$ and $\langle B\rangle$ are isomorphic).

