Problem 30: Given a ring R with identity. Let $U \subseteq R$ be the set of all units in R. Prove that U, is a group.
a. Show that U is closed under multiplication

Let $a, b \in U$, then (by definition) a, and b are units in R, so they have inverses $a^{-1}, b^{-1} \in R$
Consider the element $b^{-1} a^{-1} \in R$
$(a b)\left(b^{-1} a^{-1}\right)=a\left(b b^{-1}\right) a^{-1}=a(1) a^{-1}=a a^{-1}=1 \mathrm{a}$
and
$\left(b^{-1} a^{-1}\right)(a b)=b^{-1}\left(a^{-1} a\right) b=b^{-1}(1) b=b^{-1} b=1$
so $a b$ has an inverse $b^{-1} a^{-1} \in R$
so, $a b$ is a unit in R and $a b \in U$
b. Show that U has an identity:

We are given that R has an identity, $1 \in R$
We know $1 \cdot 1=1 \cdot 1=1$ so 1 is its own inverse, and hence 1 is a unit.
Thus $1 \in U$
c. Show that elements in U have (multiplicative) inverses in U :

Let $a \in U$
by definition a is a unit in R, so it has an inverse $a^{-1} \in R$
by definition of inverse, $a \cdot a^{-1}=a^{-1} \cdot a=1$
Hence a is the inverse of a^{-1}, so a^{-1} is a unit in R.
Thus $a^{-1} \in U$
d. Show that multiplication is associative in U.
U is a subset of R, and multiplication is associative in R, so it is associative in U.

Thus U is a group.

