Math 351 hints for this weekend's theorem proofs:
Hint 1's on this page
Hint 2's on the next page
Hints \#1

Theorem 30: Given $a \in R$, suppose a is both a unit and a zero-divisor:
--write down (using equations) what that means using the definitions of unit and zero-divisor.
--do some algebra
--get that $0=$ something that's definitely not 0
--contradiction, therefore a is not both.
Please assume that you know $0 \cdot x=0$ in a ring-we should have proved that first. Phooey.

Theorem 31 part 1: Given $a \in \mathbb{Z}_{n}$ and $\operatorname{gcd}(a, n)=1$ prove that $[a]$ is a unit in \mathbb{Z}_{n}

Notice that in the gcd statement, we are working with the integers a, d, n, not the \mathbb{Z}_{n} numbers, but when we say a is a unit, we are talking about it as a number in \mathbb{Z}_{n}
--write down the only useful equation you can get from $\operatorname{gcd}(a, n)=1$
--do algebra

- -try to get $a \cdot(\ldots) \equiv 1(\bmod n)$

Theorem 33 part 1: Given $[a] \in \mathbb{Z}_{n},[a] \not \equiv[0](\bmod n)$, and $\operatorname{gcd}(a, n)=d>1$ prove that a is a zero-divisor.

Notice that in the gcd statement, we are working with the integers a, d, n, not the \mathbb{Z}_{n} numbers.

Write down the 3 equations you know how to write for $\operatorname{gcd}(a, n)=d$

Look for some variables you can multiply together that you know will be $\equiv 0(\bmod n)$.
You need to be able to regroup into two factors, where one factor is a and the other factor can't be n (or a multiple of n)

Hints \#2:

Theorem 30: In one equation, a should be multiplied by another variable to give 1
In the other equation, a should be multiplied by another variable to give 0 .
Pay attention to the definition of zero-divisor: what do you know about both variables?
What happens when you multiply all 3 variables together?
Remember the associative law? Try to use it.
(Note that while a doesn't necessarily commute with the other variable in the zero-divisor equation, it does commute with its multiplicative inverse).

Theorem 31 part 1

Use theorem 18.
You're trying to get:
$a \cdot(\ldots) \equiv 1+n(\ldots) \equiv 1(\bmod n)$
That means $[a] \cdot[(\ldots)]=1$ in \mathbb{Z}_{n}

Theorem 33 part 1

You don't need the equation from theorem 18, you only need the other two equations you got from $\operatorname{gcd}(a, n)=d>1$

Here's the number version of the proof. See if you can turn numbers into variables in a way that gives you a correct proof:
$\operatorname{gcd}(6,15)=3>1$
So $3 \mid 6$ and $3 \mid 15$
Specifically $6=3 \cdot 2$ and $15=3 \cdot 5$
Consider the product
$2 \cdot 3 \cdot 5=(2 \cdot 3) \cdot 5=6 \cdot 5$
also $2 \cdot 3 \cdot 5=2 \cdot(3 \cdot 5)=2 \cdot 15$
Now, $6 \neq 0$ in \mathbb{Z}_{15} because that's given.
And $3 \cdot 5=15$ and $3>1$ so $5<15$ and $5 \neq 0$ in \mathbb{Z}_{15}
Also $6 \cdot 5=2 \cdot 15=0$ in \mathbb{Z}_{15}, so 6 is a zero-divisor in \mathbb{Z}_{15}

