Well Ordering Axiom Every non-empty subset of the non-negative integers contains a smallest element.

Theorem 17: Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^{+}$(b is a positive integer), then there exist unique integers q, r such that $a=b q+r$ and $0 \leq r<b$

Definition: Let a and b be integers where not both are zero, then $d=\operatorname{gcd}(a, b)$ is the greatest common divisor of a and b, which means:

- $\quad d \mid a$ and $d \mid b$
- If $c \mid a$ and $c \mid b$ then $c \leq d$

Note, our textbook writes $(a, b)=\operatorname{gcd}(a, b)$
Theorem 18 (1.2): Let a and b be integers where not both are zero, and $d=\operatorname{gcd}(a, b)$. There exist $u, v \in \mathbb{Z}$ such that $d=a u+b v$

Theorem 19 (1.3): Let a and b be integers where not both are zero, and $d=\operatorname{gcd}(a, b)$. Then if $c \mid a$ and $c \mid b$ then $c \mid d$

Theorem 20 (1.4): Let $a, b, c \in \mathbb{Z}$ such that $a \mid b c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$
Definition: Let p be an integer such that $p \neq 0, \pm 1$, then p is prime means:
Given $b, c \in \mathbb{Z}$, if $p \mid b c$ then $p \mid b$ or $p \mid c$
Definition: Let p be an integer such that $p \neq 0, \pm 1$, then p is irreducible means the only divisors of p are ± 1 and $\pm p$

Theorem 21: An integer p be an integer such that $p \neq 0, \pm 1$ is prime if and only of it is irreducible.

Theorem 22 (1.6): Let p be a prime integer and let $p \mid a_{1} a_{2} \ldots a_{n}$ then p divides at least one of the factors a_{i}.

Theorem 23 (1.7): Every integer n except $0, \pm 1$ is a product of primes.
Theorem 21 (Fundamental Theorem of Arithmetic, 1.8): If $n \in \mathbb{Z}$ and $n \neq 0, \pm 1$ then n is a product of primes, and the prime factorization is unique in the sense that if

$$
n=p_{1} p_{2} \ldots p_{r} \text { and } n=q_{1} q_{2} \ldots q_{s}
$$

such that all of the p_{i} and q_{j} are prime,
then $r=s$ and the q_{j} factors can be re-ordered such that $p_{i}= \pm q_{i}$
(We can use a permutation to write $f:\{1,2, \ldots s\} \rightarrow\{1,2, \ldots s\}$ is a permutation, and $p_{i}= \pm q_{f(i)}$)

