Well Ordering Axiom Every non-empty subset of the non-negative integers contains a smallest element.

Theorem 17: Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$ (*b* is a positive integer), then there exist unique integers q, r such that a = bq + r and $0 \le r < b$

Definition: Let *a* and *b* be integers where not both are zero, then d = gcd(a,b) is the greatest common divisor of *a* and *b*, which means:

- $d \mid a \text{ and } d \mid b$
- If $c \mid a$ and $c \mid b$ then $c \leq d$

Note, our textbook writes (a,b) = gcd(a,b)

Theorem 18 (1.2): Let *a* and *b* be integers where not both are zero, and d = gcd(a,b). There exist $u, v \in \mathbb{Z}$ such that d = au + bv

Theorem 19 (1.3): Let *a* and *b* be integers where not both are zero, and d = gcd(a,b). Then if $c \mid a$ and $c \mid b$ then $c \mid d$

Theorem 20 (1.4): Let $a, b, c \in \mathbb{Z}$ such that $a \mid bc$ and gcd(a, b) = 1 then $a \mid c$

Definition: Let *p* be an integer such that $p \neq 0, \pm 1$, then *p* is **prime** means:

Given $b, c \in \mathbb{Z}$, if p | bc then p | b or p | c

Definition: Let *p* be an integer such that $p \neq 0, \pm 1$, then *p* is **irreducible** means the only divisors of *p* are ± 1 and $\pm p$

Theorem 21: An integer p be an integer such that $p \neq 0, \pm 1$ is prime if and only of it is irreducible.

Theorem 22 (1.6): Let *p* be a prime integer and let $p | a_1 a_2 ... a_n$ then *p* divides at least one of the factors a_i .

Theorem 23 (1.7): Every integer *n* except $0, \pm 1$ is a product of primes.

Theorem 21 (Fundamental Theorem of Arithmetic, 1.8): If $n \in \mathbb{Z}$ and $n \neq 0, \pm 1$ then *n* is a product of primes, and the prime factorization is unique in the sense that if

 $n = p_1 p_2 \dots p_r$ and $n = q_1 q_2 \dots q_s$

such that all of the p_i and q_j are prime,

then r = s and the q_i factors can be re-ordered such that $p_i = \pm q_i$

(We can use a permutation to write $f: \{1, 2, ..., s\} \rightarrow \{1, 2, ..., s\}$ is a permutation, and $p_i = \pm q_{f(i)}$)