Problem 26: Let r∈ D₄ be the counterclockwise rotation by 90°, and let S =< r> ⊂ D₄ be the subgroup generated by r. We know from theorem 11 that S = {rⁿ | n ∈ Z}, ∘. You may also assume that you know that rⁿ is the counterclockwise rotation by 90° · n
Let f: S → Z₄, + such that f(rⁿ) = [n]₄
a. Prove f is a function. To do this you must prove that if rⁿ = r^m then [n] = [m]
b. Prove that f is a (group) isomorphism.

Problem 27: Given a ring, *R*, and $a, b \in R$ such that $a \neq 0$

a. Does *a* or *R* need any additional properties in order for us to be able to find a solution for *x* that is an element of *R* to the equation a + x = b? (If so, what properties do you need? If not, how would you solve it?)

b. Does *a* or *R* need any additional properties in order for us to be able to find a solution for *x* that is an element of *R* to the equation ax = b? (If so, what properties do you need? If not, how would you solve it?)

Problem 28:. I would like to have a ring *R* that has the zero-product property, which states:

If $c, d \in R$ and cd = 0 then c = 0 or d = 0

This property will be true if *R* does not have any elements that are _____

Problem 29: I would like to have a ring *R* where $x = ba^{-1}$ is the solution to the equation ax = b for all $a, b \in R$ such that $a \neq 0$. What additional properties must *R* have in order for this to be true?

Problem 30: Given a ring *R* with identity. Let $U \subseteq R$ be the set of all units in *R*. Prove that U, \cdot is a group.

Problem 31: U_n is the set of units in \mathbb{Z}_n . List the elements in:

- a) U_5
- b) U_8
- c) U_{10}
- d) U_{12}
- e) U₁₅