Abstract Algebra Problems

1. Find the subgroup of M_2 (addition): $\left\langle \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \right\rangle$

2. Find the subgroup of $S_4 < (1 \ 2 \ 4) >$

Problem 10: What are the elements of $\langle a \rangle$ if $a \in G$ and G is a group with binary operation +.

Theorem 11: In a group G, with element $a \in G$, then $\langle a \rangle$ is a commutative group.

Problem 12: Describe each of these subgroups in a way that lists or describes all of the elements of the subgroup

- a) $<4>\subseteq \mathbb{Z}$ b) $<4,6>\subseteq \mathbb{Z}$ c) $<\pi>\subseteq \mathbb{R}$ d) $<(1\ 2\ 3\ 4\ 5)>\subseteq S_5$
- e) $<(1 \ 2),(3 \ 4) > \subseteq S_4$
- f) $<(1 \ 2),(1 \ 2 \ 4)>\subseteq S_4$
- g) $\langle r_{90} \rangle \subseteq D_8$ where r_{90} is the 90° clockwise rotation.

Problem 13: Which of the subgroups in problem 12 are abelian?

Problem 14: Give an example of a group that is not abelian.

Problem 15: Find a subset of the complex numbers that forms a group with the operation of multiplication. Explain how you know that it is closed and has inverses. Explain why 0 is not in your set.

Problem 16: Find a subset of the 2×2 matrices that is a group with the operation of matrix multiplication. Explain how you know that it is closed and has inverses.

Problem 17: Which of these sets are groups under matrix multiplication? Explain.

a.
$$S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R}, ad - bc = 1 \right\}$$

b.
$$S = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a > 0; a \in \mathbb{R} \right\}$$

c.
$$S = \left\{ \begin{pmatrix} a & 1 \\ 0 & d \end{pmatrix} \middle| a, d > 0; a, d \in \mathbb{R} \right\}$$

d.
$$S = \left\{ \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \middle| a, b, c > 0; a, b, c \in \mathbb{R} \right\}$$

Problem 18: Prove each of these sets are not groups with the identified operation:

a.
$$\mathbb{R}, \times$$
 b. $S = \left\{ \begin{pmatrix} a & 1 \\ 0 & d \end{pmatrix} \middle| a, d > 0; a, d \in \mathbb{R} \right\}, \times$

c. $\{e, v, u, d\} \subseteq D_3$ the set of reflections and the identity.

d.
$$S = \left\{ \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \middle| a, b, c > 0; a, b, c \in \mathbb{R} \right\}, \times$$

Problem 19: Prove each of these sets are groups, with the identified operation:

a.
$$\mathbb{Q}^* = \left\{ \frac{a}{b} \middle| a, b \in \mathbb{Z}, a, b \neq 0 \right\}, \times$$

b. $S = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix} \middle| d > 0; d \in \mathbb{R} \right\}, \times$

Problem 20: Prove $a^n a^m = a^{n+m}$ for |m| > n > 0 and m < 0 without using induction

Problem 21: Prove $a^n a^m = a^{n+m}$ for $n \ge 0$ and m < 0 by using induction on n.

Problem 22: Let $S = \langle 2 \rangle \subseteq \mathbb{Z}$, + which means $S = \{2n \mid n \in \mathbb{Z}\}$ (additive) And let $T = \langle 2 \rangle \subseteq \mathbb{R}^*, \times$ which means $T = \{2^n \mid n \in \mathbb{Z}\}$ (multiplicative) Let $f : S \to T$ such that $f(2n) = 2^n$ Prove f is an isomorphism.

Problem 23: Let $S = \langle 3 \rangle \subseteq \mathbb{Z}$, + which means $S = \{3n \mid n \in \mathbb{Z}\}$ (additive) And let $T = \langle 5 \rangle \subseteq \mathbb{R}^*, \times$ which means $T = \{5^n \mid n \in \mathbb{Z}\}$ (multiplicative) Let $f : S \to T$ such that $f(3n) = 5^n$ Prove f is an isomorphism.

Problem 24: Prove that \mathbb{Z}_n , + is a group for any positive integer *n*.

Problem 25: List all of the units and all of the zero divisors of

a. \mathbb{Z}_4 b. \mathbb{Z}_5 c. \mathbb{Z}_6 d. \mathbb{Z}_7 e. \mathbb{Z}_{10}

Problem 26: Let $r \in D_4$ be the counterclockwise rotation by 90°, and let $S = \langle r \rangle \subseteq D_4$ be the subgroup generated by r. We know from theorem 11 that $S = \{r^n \mid n \in \mathbb{Z}\}, \circ$. You may also assume that you know that r^n is the counterclockwise rotation by 90° $\cdot n$ Let $f: S \to \mathbb{Z}_4$, + such that $f(r^n) = [n]_4$ a. Prove f is a function. To do this you must prove that if $r^n = r^m$ then [n] = [m]b. Prove that f is a (group) isomorphism.

Problem 27: Given a ring, *R*, and $a, b \in R$ such that $a \neq 0$

a. Does *a* or *R* need any additional properties in order for us to be able to find a solution for *x* that is an element of *R* to the equation a + x = b? (If so, what properties do you need? If not, how would you solve it?)

b. Does *a* or *R* need any additional properties in order for us to be able to find a solution for *x* that is an element of *R* to the equation ax = b? (If so, what properties do you need? If not, how would you solve it?)

Problem 28: I would like to have a ring *R* that has the zero-product property, which states:

If $c, d \in R$ and cd = 0 then c = 0 or d = 0

This property will be true if *R* does not have any elements that are

Problem 29: I would like to have a ring *R* where $x = ba^{-1}$ is the solution to the equation ax = b for all $a, b \in R$ such that $a \neq 0$. What additional properties must *R* have in order for this to be true?

Problem 30: Given a ring *R* with identity. Let $U \subseteq R$ be the set of all units in *R*. Prove that U, \cdot is a group.

Problem 31: U_n is the set of units in \mathbb{Z}_n . List the elements in:

- a) U_5
- b) U_8
- c) U_{10}
- d) U_{12}
- e) U₁₅