Abstract Algebra Problems

1. Find the subgroup of M_{2} (addition): $\left\langle\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]\right\rangle$
2. Find the subgroup of $S_{4}<\left(\begin{array}{ll}1 & 4\end{array}\right)>$

Problem 10: What are the elements of $\langle a\rangle$ if $a \in G$ and G is a group with binary operation +.
Theorem 11: In a group G, with element $a \in G$, then $\langle a\rangle$ is a commutative group.
Problem 12: Describe each of these subgroups in a way that lists or describes all of the elements of the subgroup
a) $\langle 4\rangle \subseteq \mathbb{Z}$
b) $\langle 4,6\rangle \subseteq \mathbb{Z}$
c) $\langle\pi\rangle \subseteq \mathbb{R}$
d) $<\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)>\subseteq S_{5}$
e) $<\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}3 & 4\end{array}\right)>\subseteq S_{4}$
f) $<\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 4\end{array}\right)>\subseteq S_{4}$
g) $<r_{90}>\subseteq D_{8}$ where r_{90} is the 90° clockwise rotation.

Problem 13: Which of the subgroups in problem 12 are abelian?
Problem 14: Give an example of a group that is not abelian.
Problem 15: Find a subset of the complex numbers that forms a group with the operation of multiplication. Explain how you know that it is closed and has inverses. Explain why 0 is not in your set.

Problem 16: Find a subset of the 2×2 matrices that is a group with the operation of matrix multiplication. Explain how you know that it is closed and has inverses.

Problem 17: Which of these sets are groups under matrix multiplication? Explain.
a. $S=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}, a d-b c=1\right\}$
b. $\quad S=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right) \right\rvert\, a>0 ; \quad a \in \mathbb{R}\right\}$
c. $S=\left\{\left.\left(\begin{array}{ll}a & 1 \\ 0 & d\end{array}\right) \right\rvert\, a, d>0 ; a, d \in \mathbb{R}\right\}$
d. $S=\left\{\left.\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \right\rvert\, a, b, c>0 ; a, b, c \in \mathbb{R}\right\}$

Problem 18: Prove each of these sets are not groups with the identified operation:
a. \mathbb{R}, \times
b. $S=\left\{\left.\left(\begin{array}{ll}a & 1 \\ 0 & d\end{array}\right) \right\rvert\, a, d>0 ; a, d \in \mathbb{R}\right\}, \times$
c. $\{e, v, u, d\} \subseteq D_{3}$ the set of reflections and the identity.
d. $S=\left\{\left.\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \right\rvert\, a, b, c>0 ; a, b, c \in \mathbb{R}\right\}, \times$

Problem 19: Prove each of these sets are groups, with the identified operation:
a. $\mathbb{Q}^{*}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, a, b \neq 0\right\}, \times$
b. $S=\left\{\left.\left(\begin{array}{ll}0 & 0 \\ 0 & d\end{array}\right) \right\rvert\, d>0 ; d \in \mathbb{R}\right\}, \times$

Problem 20: Prove $a^{n} a^{m}=a^{n+m}$ for $|m|>n>0$ and $m<0$ without using induction
Problem 21: Prove $a^{n} a^{m}=a^{n+m}$ for $n \geq 0$ and $m<0$ by using induction on n.
Problem 22: Let $S=<2>\subseteq \mathbb{Z},+$ which means $S=\{2 n \mid n \in \mathbb{Z}\}$ (additive)
And let $T=<2>\subseteq \mathbb{R}^{*}, \times$ which means $T=\left\{2^{n} \mid n \in \mathbb{Z}\right\}$ (multiplicative)
Let $f: S \rightarrow T$ such that $f(2 n)=2^{n}$
Prove f is an isomorphism.
Problem 23: Let $S=<3>\subseteq \mathbb{Z}$,+ which means $S=\{3 n \mid n \in \mathbb{Z}\}$ (additive)
And let $T=<5>\subseteq \mathbb{R}^{*}, \times$ which means $T=\left\{5^{n} \mid n \in \mathbb{Z}\right\}$ (multiplicative)
Let $f: S \rightarrow T$ such that $f(3 n)=5^{n}$
Prove f is an isomorphism.
Problem 24: Prove that $\mathbb{Z}_{n},+$ is a group for any positive integer n.
Problem 25: List all of the units and all of the zero divisors of
a. \mathbb{Z}_{4}
b. \mathbb{Z}_{5}
c. \mathbb{Z}_{6}
d. \mathbb{Z}_{7}
e. \mathbb{Z}_{10}

Problem 26: Let $r \in D_{4}$ be the counterclockwise rotation by 90°, and let $S=<r>\subseteq D_{4}$ be the subgroup generated by r. We know from theorem 11 that $S=\left\{r^{n} \mid n \in \mathbb{Z}\right\}, \circ$. You may also assume that you know that r^{n} is the counterclockwise rotation by $90^{\circ} \cdot n$ Let $f: S \rightarrow \mathbb{Z}_{4},+$ such that $f\left(r^{n}\right)=[n]_{4}$
a. Prove f is a function. To do this you must prove that if $r^{n}=r^{m}$ then $[n]=[m]$
b. Prove that f is a (group) isomorphism.

Problem 27: Given a ring, R, and $a, b \in R$ such that $a \neq 0$
a. Does a or R need any additional properties in order for us to be able to find a solution for x that is an element of R to the equation $a+x=b$? (If so, what properties do you need? If not, how would you solve it?)
b. Does a or R need any additional properties in order for us to be able to find a solution for x that is an element of R to the equation $a x=b$? (If so, what properties do you need? If not, how would you solve it?)

Problem 28:. I would like to have a ring R that has the zero-product property, which states:

$$
\text { If } c, d \in R \text { and } c d=0 \text { then } c=0 \text { or } d=0
$$

This property will be true if R does not have any elements that are \qquad .

Problem 29:. I would like to have a ring R where $x=b a^{-1}$ is the solution to the equation $a x=b$ for all $a, b \in R$ such that $a \neq 0$. What additional properties must R have in order for this to be true?

Problem 30: Given a ring R with identity. Let $U \subseteq R$ be the set of all units in R. Prove that U, is a group.

Problem 31: U_{n} is the set of units in \mathbb{Z}_{n}. List the elements in:
a) U_{5}
b) U_{8}
c) U_{10}
d) U_{12}
e) U_{15}

